Text Generation
GGUF
TensorBlock
GGUF
Eval Results
Inference Endpoints
File size: 19,120 Bytes
fa7957c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
    review as positive, neutral or negative?
  example_title: zh-en sentiment
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
  example_title: zh-zh sentiment
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
  example_title: vi-en query
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels».
  example_title: fr-fr query
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
  example_title: te-en qa
- text: Why is the sky blue?
  example_title: en-en qa
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon.
    The fairy tale is a masterpiece that has achieved praise worldwide and its moral
    is "Heroes Come in All Shapes and Sizes". Story (in Spanish):'
  example_title: es-en fable
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded
    by ogres. The fable is a masterpiece that has achieved praise worldwide and its
    moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):'
  example_title: hi-en fable
base_model: bigscience/bloomz-1b7
tags:
- TensorBlock
- GGUF
model-index:
- name: bloomz-1b7
  results:
  - task:
      type: Coreference resolution
    dataset:
      name: Winogrande XL (xl)
      type: winogrande
      config: xl
      split: validation
      revision: a80f460359d1e9a67c006011c94de42a8759430c
    metrics:
    - type: Accuracy
      value: 51.14
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (en)
      type: Muennighoff/xwinograd
      config: en
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 56.34
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (fr)
      type: Muennighoff/xwinograd
      config: fr
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 55.42
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (jp)
      type: Muennighoff/xwinograd
      config: jp
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 52.55
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (pt)
      type: Muennighoff/xwinograd
      config: pt
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 53.23
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (ru)
      type: Muennighoff/xwinograd
      config: ru
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 55.24
  - task:
      type: Coreference resolution
    dataset:
      name: XWinograd (zh)
      type: Muennighoff/xwinograd
      config: zh
      split: test
      revision: 9dd5ea5505fad86b7bedad667955577815300cee
    metrics:
    - type: Accuracy
      value: 56.15
  - task:
      type: Natural language inference
    dataset:
      name: ANLI (r1)
      type: anli
      config: r1
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 34.0
  - task:
      type: Natural language inference
    dataset:
      name: ANLI (r2)
      type: anli
      config: r2
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 36.1
  - task:
      type: Natural language inference
    dataset:
      name: ANLI (r3)
      type: anli
      config: r3
      split: validation
      revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
    metrics:
    - type: Accuracy
      value: 37.08
  - task:
      type: Natural language inference
    dataset:
      name: SuperGLUE (cb)
      type: super_glue
      config: cb
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 71.43
  - task:
      type: Natural language inference
    dataset:
      name: SuperGLUE (rte)
      type: super_glue
      config: rte
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 76.17
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (ar)
      type: xnli
      config: ar
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 50.04
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (bg)
      type: xnli
      config: bg
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 42.17
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (de)
      type: xnli
      config: de
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 42.73
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (el)
      type: xnli
      config: el
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 41.81
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (en)
      type: xnli
      config: en
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 55.02
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (es)
      type: xnli
      config: es
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 52.97
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (fr)
      type: xnli
      config: fr
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 52.21
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (hi)
      type: xnli
      config: hi
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 48.07
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (ru)
      type: xnli
      config: ru
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 45.1
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (sw)
      type: xnli
      config: sw
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 44.34
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (th)
      type: xnli
      config: th
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 40.36
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (tr)
      type: xnli
      config: tr
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 37.15
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (ur)
      type: xnli
      config: ur
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 44.38
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (vi)
      type: xnli
      config: vi
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 51.08
  - task:
      type: Natural language inference
    dataset:
      name: XNLI (zh)
      type: xnli
      config: zh
      split: validation
      revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
    metrics:
    - type: Accuracy
      value: 51.12
  - task:
      type: Program synthesis
    dataset:
      name: HumanEval
      type: openai_humaneval
      config: None
      split: test
      revision: e8dc562f5de170c54b5481011dd9f4fa04845771
    metrics:
    - type: Pass@1
      value: 4.38
    - type: Pass@10
      value: 8.73
    - type: Pass@100
      value: 16.09
  - task:
      type: Sentence completion
    dataset:
      name: StoryCloze (2016)
      type: story_cloze
      config: '2016'
      split: validation
      revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
    metrics:
    - type: Accuracy
      value: 82.9
  - task:
      type: Sentence completion
    dataset:
      name: SuperGLUE (copa)
      type: super_glue
      config: copa
      split: validation
      revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
    metrics:
    - type: Accuracy
      value: 69.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (et)
      type: xcopa
      config: et
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 50.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (ht)
      type: xcopa
      config: ht
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 54.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (id)
      type: xcopa
      config: id
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 61.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (it)
      type: xcopa
      config: it
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 49.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (qu)
      type: xcopa
      config: qu
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 56.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (sw)
      type: xcopa
      config: sw
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 57.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (ta)
      type: xcopa
      config: ta
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 56.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (th)
      type: xcopa
      config: th
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 60.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (tr)
      type: xcopa
      config: tr
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 59.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (vi)
      type: xcopa
      config: vi
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 70.0
  - task:
      type: Sentence completion
    dataset:
      name: XCOPA (zh)
      type: xcopa
      config: zh
      split: validation
      revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
    metrics:
    - type: Accuracy
      value: 67.0
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (ar)
      type: Muennighoff/xstory_cloze
      config: ar
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 73.33
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (es)
      type: Muennighoff/xstory_cloze
      config: es
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 77.96
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (eu)
      type: Muennighoff/xstory_cloze
      config: eu
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 60.49
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (hi)
      type: Muennighoff/xstory_cloze
      config: hi
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 72.87
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (id)
      type: Muennighoff/xstory_cloze
      config: id
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 74.92
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (my)
      type: Muennighoff/xstory_cloze
      config: my
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 51.09
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (ru)
      type: Muennighoff/xstory_cloze
      config: ru
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 56.39
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (sw)
      type: Muennighoff/xstory_cloze
      config: sw
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 61.28
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (te)
      type: Muennighoff/xstory_cloze
      config: te
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 66.25
  - task:
      type: Sentence completion
    dataset:
      name: XStoryCloze (zh)
      type: Muennighoff/xstory_cloze
      config: zh
      split: validation
      revision: 8bb76e594b68147f1a430e86829d07189622b90d
    metrics:
    - type: Accuracy
      value: 78.69
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## bigscience/bloomz-1b7 - GGUF

This repo contains GGUF format model files for [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [bloomz-1b7-Q2_K.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q2_K.gguf) | Q2_K | 0.980 GB | smallest, significant quality loss - not recommended for most purposes |
| [bloomz-1b7-Q3_K_S.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q3_K_S.gguf) | Q3_K_S | 1.096 GB | very small, high quality loss |
| [bloomz-1b7-Q3_K_M.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q3_K_M.gguf) | Q3_K_M | 1.197 GB | very small, high quality loss |
| [bloomz-1b7-Q3_K_L.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q3_K_L.gguf) | Q3_K_L | 1.254 GB | small, substantial quality loss |
| [bloomz-1b7-Q4_0.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q4_0.gguf) | Q4_0 | 1.309 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [bloomz-1b7-Q4_K_S.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q4_K_S.gguf) | Q4_K_S | 1.315 GB | small, greater quality loss |
| [bloomz-1b7-Q4_K_M.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q4_K_M.gguf) | Q4_K_M | 1.392 GB | medium, balanced quality - recommended |
| [bloomz-1b7-Q5_0.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q5_0.gguf) | Q5_0 | 1.509 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [bloomz-1b7-Q5_K_S.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q5_K_S.gguf) | Q5_K_S | 1.509 GB | large, low quality loss - recommended |
| [bloomz-1b7-Q5_K_M.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q5_K_M.gguf) | Q5_K_M | 1.571 GB | large, very low quality loss - recommended |
| [bloomz-1b7-Q6_K.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q6_K.gguf) | Q6_K | 1.722 GB | very large, extremely low quality loss |
| [bloomz-1b7-Q8_0.gguf](https://huggingface.co/tensorblock/bloomz-1b7-GGUF/tree/main/bloomz-1b7-Q8_0.gguf) | Q8_0 | 2.226 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/bloomz-1b7-GGUF --include "bloomz-1b7-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/bloomz-1b7-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```