File size: 6,804 Bytes
479110a cce71b3 479110a 68752e6 6ab114c 0949bdd 6ab114c 0949bdd 6ab114c 479110a 68752e6 479110a 68752e6 479110a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: other
license_name: deepseek-license
license_link: LICENSE
tags:
- TensorBlock
- GGUF
base_model: deepseek-ai/deepseek-coder-33b-base
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## deepseek-ai/deepseek-coder-33b-base - GGUF
This repo contains GGUF format model files for [deepseek-ai/deepseek-coder-33b-base](https://huggingface.co/deepseek-ai/deepseek-coder-33b-base).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [deepseek-coder-33b-base-Q2_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q2_K.gguf) | Q2_K | 11.507 GB | smallest, significant quality loss - not recommended for most purposes |
| [deepseek-coder-33b-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q3_K_S.gguf) | Q3_K_S | 13.431 GB | very small, high quality loss |
| [deepseek-coder-33b-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q3_K_M.gguf) | Q3_K_M | 14.987 GB | very small, high quality loss |
| [deepseek-coder-33b-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q3_K_L.gguf) | Q3_K_L | 16.354 GB | small, substantial quality loss |
| [deepseek-coder-33b-base-Q4_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q4_0.gguf) | Q4_0 | 17.527 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [deepseek-coder-33b-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q4_K_S.gguf) | Q4_K_S | 17.642 GB | small, greater quality loss |
| [deepseek-coder-33b-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q4_K_M.gguf) | Q4_K_M | 18.571 GB | medium, balanced quality - recommended |
| [deepseek-coder-33b-base-Q5_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q5_0.gguf) | Q5_0 | 21.381 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [deepseek-coder-33b-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q5_K_S.gguf) | Q5_K_S | 21.381 GB | large, low quality loss - recommended |
| [deepseek-coder-33b-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q5_K_M.gguf) | Q5_K_M | 21.919 GB | large, very low quality loss - recommended |
| [deepseek-coder-33b-base-Q6_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q6_K.gguf) | Q6_K | 25.477 GB | very large, extremely low quality loss |
| [deepseek-coder-33b-base-Q8_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-33b-base-GGUF/blob/main/deepseek-coder-33b-base-Q8_0.gguf) | Q8_0 | 32.997 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/deepseek-coder-33b-base-GGUF --include "deepseek-coder-33b-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/deepseek-coder-33b-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|