---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- TensorBlock
- GGUF
base_model: ibm-granite/granite-3.0-8b-instruct
model-index:
- name: granite-3.0-2b-instruct
results:
- task:
type: text-generation
dataset:
name: IFEval
type: instruction-following
metrics:
- type: pass@1
value: 52.27
name: pass@1
- type: pass@1
value: 8.22
name: pass@1
- task:
type: text-generation
dataset:
name: AGI-Eval
type: human-exams
metrics:
- type: pass@1
value: 40.52
name: pass@1
- type: pass@1
value: 65.82
name: pass@1
- type: pass@1
value: 34.45
name: pass@1
- task:
type: text-generation
dataset:
name: OBQA
type: commonsense
metrics:
- type: pass@1
value: 46.6
name: pass@1
- type: pass@1
value: 71.21
name: pass@1
- type: pass@1
value: 82.61
name: pass@1
- type: pass@1
value: 77.51
name: pass@1
- type: pass@1
value: 60.32
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 88.65
name: pass@1
- type: pass@1
value: 21.58
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 64.16
name: pass@1
- type: pass@1
value: 33.81
name: pass@1
- type: pass@1
value: 51.55
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis
type: code
metrics:
- type: pass@1
value: 64.63
name: pass@1
- type: pass@1
value: 57.16
name: pass@1
- type: pass@1
value: 65.85
name: pass@1
- type: pass@1
value: 49.6
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 68.99
name: pass@1
- type: pass@1
value: 30.94
name: pass@1
- task:
type: text-generation
dataset:
name: PAWS-X (7 langs)
type: multilingual
metrics:
- type: pass@1
value: 64.94
name: pass@1
- type: pass@1
value: 48.2
name: pass@1
---
## ibm-granite/granite-3.0-8b-instruct - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|start_of_role|>system<|end_of_role|>{system_prompt}<|end_of_text|>
<|start_of_role|>user<|end_of_role|>{prompt}<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-3.0-8b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q2_K.gguf) | Q2_K | 2.890 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-3.0-8b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_S.gguf) | Q3_K_S | 3.346 GB | very small, high quality loss |
| [granite-3.0-8b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_M.gguf) | Q3_K_M | 3.722 GB | very small, high quality loss |
| [granite-3.0-8b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_L.gguf) | Q3_K_L | 4.051 GB | small, substantial quality loss |
| [granite-3.0-8b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_0.gguf) | Q4_0 | 4.331 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-3.0-8b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_K_S.gguf) | Q4_K_S | 4.364 GB | small, greater quality loss |
| [granite-3.0-8b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_K_M.gguf) | Q4_K_M | 4.603 GB | medium, balanced quality - recommended |
| [granite-3.0-8b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_0.gguf) | Q5_0 | 5.259 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-3.0-8b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_K_S.gguf) | Q5_K_S | 5.259 GB | large, low quality loss - recommended |
| [granite-3.0-8b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_K_M.gguf) | Q5_K_M | 5.399 GB | large, very low quality loss - recommended |
| [granite-3.0-8b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q6_K.gguf) | Q6_K | 6.245 GB | very large, extremely low quality loss |
| [granite-3.0-8b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q8_0.gguf) | Q8_0 | 8.088 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-3.0-8b-instruct-GGUF --include "granite-3.0-8b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-3.0-8b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```