--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.0 - TensorBlock - GGUF base_model: ibm-granite/granite-3.0-8b-instruct model-index: - name: granite-3.0-2b-instruct results: - task: type: text-generation dataset: name: IFEval type: instruction-following metrics: - type: pass@1 value: 52.27 name: pass@1 - type: pass@1 value: 8.22 name: pass@1 - task: type: text-generation dataset: name: AGI-Eval type: human-exams metrics: - type: pass@1 value: 40.52 name: pass@1 - type: pass@1 value: 65.82 name: pass@1 - type: pass@1 value: 34.45 name: pass@1 - task: type: text-generation dataset: name: OBQA type: commonsense metrics: - type: pass@1 value: 46.6 name: pass@1 - type: pass@1 value: 71.21 name: pass@1 - type: pass@1 value: 82.61 name: pass@1 - type: pass@1 value: 77.51 name: pass@1 - type: pass@1 value: 60.32 name: pass@1 - task: type: text-generation dataset: name: BoolQ type: reading-comprehension metrics: - type: pass@1 value: 88.65 name: pass@1 - type: pass@1 value: 21.58 name: pass@1 - task: type: text-generation dataset: name: ARC-C type: reasoning metrics: - type: pass@1 value: 64.16 name: pass@1 - type: pass@1 value: 33.81 name: pass@1 - type: pass@1 value: 51.55 name: pass@1 - task: type: text-generation dataset: name: HumanEvalSynthesis type: code metrics: - type: pass@1 value: 64.63 name: pass@1 - type: pass@1 value: 57.16 name: pass@1 - type: pass@1 value: 65.85 name: pass@1 - type: pass@1 value: 49.6 name: pass@1 - task: type: text-generation dataset: name: GSM8K type: math metrics: - type: pass@1 value: 68.99 name: pass@1 - type: pass@1 value: 30.94 name: pass@1 - task: type: text-generation dataset: name: PAWS-X (7 langs) type: multilingual metrics: - type: pass@1 value: 64.94 name: pass@1 - type: pass@1 value: 48.2 name: pass@1 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## ibm-granite/granite-3.0-8b-instruct - GGUF This repo contains GGUF format model files for [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|start_of_role|>system<|end_of_role|>{system_prompt}<|end_of_text|> <|start_of_role|>user<|end_of_role|>{prompt}<|end_of_text|> <|start_of_role|>assistant<|end_of_role|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-3.0-8b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q2_K.gguf) | Q2_K | 2.890 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-3.0-8b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_S.gguf) | Q3_K_S | 3.346 GB | very small, high quality loss | | [granite-3.0-8b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_M.gguf) | Q3_K_M | 3.722 GB | very small, high quality loss | | [granite-3.0-8b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q3_K_L.gguf) | Q3_K_L | 4.051 GB | small, substantial quality loss | | [granite-3.0-8b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_0.gguf) | Q4_0 | 4.331 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-3.0-8b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_K_S.gguf) | Q4_K_S | 4.364 GB | small, greater quality loss | | [granite-3.0-8b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q4_K_M.gguf) | Q4_K_M | 4.603 GB | medium, balanced quality - recommended | | [granite-3.0-8b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_0.gguf) | Q5_0 | 5.259 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-3.0-8b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_K_S.gguf) | Q5_K_S | 5.259 GB | large, low quality loss - recommended | | [granite-3.0-8b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q5_K_M.gguf) | Q5_K_M | 5.399 GB | large, very low quality loss - recommended | | [granite-3.0-8b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q6_K.gguf) | Q6_K | 6.245 GB | very large, extremely low quality loss | | [granite-3.0-8b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-instruct-GGUF/blob/main/granite-3.0-8b-instruct-Q8_0.gguf) | Q8_0 | 8.088 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-3.0-8b-instruct-GGUF --include "granite-3.0-8b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-3.0-8b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```