---
base_model: neuralmagic/llama2.c-stories110M-pruned50
inference: true
model_type: llama
quantized_by: mgoin
tags:
- nm-vllm
- sparse
- TensorBlock
- GGUF
---
## neuralmagic/llama2.c-stories110M-pruned50 - GGUF
This repo contains GGUF format model files for [neuralmagic/llama2.c-stories110M-pruned50](https://huggingface.co/neuralmagic/llama2.c-stories110M-pruned50).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [llama2.c-stories110M-pruned50-Q2_K.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q2_K.gguf) | Q2_K | 0.060 GB | smallest, significant quality loss - not recommended for most purposes |
| [llama2.c-stories110M-pruned50-Q3_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q3_K_S.gguf) | Q3_K_S | 0.068 GB | very small, high quality loss |
| [llama2.c-stories110M-pruned50-Q3_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q3_K_M.gguf) | Q3_K_M | 0.073 GB | very small, high quality loss |
| [llama2.c-stories110M-pruned50-Q3_K_L.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q3_K_L.gguf) | Q3_K_L | 0.077 GB | small, substantial quality loss |
| [llama2.c-stories110M-pruned50-Q4_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q4_0.gguf) | Q4_0 | 0.083 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [llama2.c-stories110M-pruned50-Q4_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q4_K_S.gguf) | Q4_K_S | 0.083 GB | small, greater quality loss |
| [llama2.c-stories110M-pruned50-Q4_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q4_K_M.gguf) | Q4_K_M | 0.086 GB | medium, balanced quality - recommended |
| [llama2.c-stories110M-pruned50-Q5_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q5_0.gguf) | Q5_0 | 0.096 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama2.c-stories110M-pruned50-Q5_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q5_K_S.gguf) | Q5_K_S | 0.096 GB | large, low quality loss - recommended |
| [llama2.c-stories110M-pruned50-Q5_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q5_K_M.gguf) | Q5_K_M | 0.098 GB | large, very low quality loss - recommended |
| [llama2.c-stories110M-pruned50-Q6_K.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q6_K.gguf) | Q6_K | 0.111 GB | very large, extremely low quality loss |
| [llama2.c-stories110M-pruned50-Q8_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories110M-pruned50-GGUF/blob/main/llama2.c-stories110M-pruned50-Q8_0.gguf) | Q8_0 | 0.143 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/llama2.c-stories110M-pruned50-GGUF --include "llama2.c-stories110M-pruned50-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/llama2.c-stories110M-pruned50-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```