File size: 8,748 Bytes
1d75667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
tags:
- generated_from_trainer
- TensorBlock
- GGUF
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: HuggingFaceH4/zephyr-7b-beta
widget:
- example_title: Pirate!
messages:
- role: system
content: You are a pirate chatbot who always responds with Arr!
- role: user
content: There's a llama on my lawn, how can I get rid of him?
output:
text: Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight,
but I've got a plan that might help ye get rid of 'im. Ye'll need to gather
some carrots and hay, and then lure the llama away with the promise of a tasty
treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet
once again. But beware, me hearty, for there may be more llamas where that one
came from! Arr!
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.03071672354948
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.35570603465445
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Drop (3-Shot)
type: drop
split: validation
args:
num_few_shot: 3
metrics:
- type: f1
value: 9.66243708053691
name: f1 score
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.44916942762855
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.736921910538287
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.07
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.7426992896606
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: AlpacaEval
type: tatsu-lab/alpaca_eval
metrics:
- type: unknown
value: 0.906
name: win rate
source:
url: https://tatsu-lab.github.io/alpaca_eval/
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
value: 7.34
name: score
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## HuggingFaceH4/zephyr-7b-beta - GGUF
This repo contains GGUF format model files for [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|system|>
{system_prompt}</s>
<|user|>
{prompt}</s>
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [zephyr-7b-beta-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
| [zephyr-7b-beta-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
| [zephyr-7b-beta-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
| [zephyr-7b-beta-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
| [zephyr-7b-beta-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [zephyr-7b-beta-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
| [zephyr-7b-beta-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
| [zephyr-7b-beta-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [zephyr-7b-beta-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
| [zephyr-7b-beta-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
| [zephyr-7b-beta-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
| [zephyr-7b-beta-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/zephyr-7b-beta-GGUF --include "zephyr-7b-beta-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/zephyr-7b-beta-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|