--- tags: - generated_from_trainer - TensorBlock - GGUF license: mit datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: HuggingFaceH4/zephyr-7b-beta widget: - example_title: Pirate! messages: - role: system content: You are a pirate chatbot who always responds with Arr! - role: user content: There's a llama on my lawn, how can I get rid of him? output: text: Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight, but I've got a plan that might help ye get rid of 'im. Ye'll need to gather some carrots and hay, and then lure the llama away with the promise of a tasty treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet once again. But beware, me hearty, for there may be more llamas where that one came from! Arr! pipeline_tag: text-generation model-index: - name: zephyr-7b-beta results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.03071672354948 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.35570603465445 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Drop (3-Shot) type: drop split: validation args: num_few_shot: 3 metrics: - type: f1 value: 9.66243708053691 name: f1 score source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.44916942762855 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.736921910538287 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.7426992896606 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: AlpacaEval type: tatsu-lab/alpaca_eval metrics: - type: unknown value: 0.906 name: win rate source: url: https://tatsu-lab.github.io/alpaca_eval/ - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown value: 7.34 name: score source: url: https://huggingface.co/spaces/lmsys/mt-bench ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## HuggingFaceH4/zephyr-7b-beta - GGUF This repo contains GGUF format model files for [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` <|system|> {system_prompt} <|user|> {prompt} <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zephyr-7b-beta-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes | | [zephyr-7b-beta-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss | | [zephyr-7b-beta-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss | | [zephyr-7b-beta-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss | | [zephyr-7b-beta-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zephyr-7b-beta-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss | | [zephyr-7b-beta-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended | | [zephyr-7b-beta-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zephyr-7b-beta-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended | | [zephyr-7b-beta-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended | | [zephyr-7b-beta-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss | | [zephyr-7b-beta-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-beta-GGUF/tree/main/zephyr-7b-beta-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zephyr-7b-beta-GGUF --include "zephyr-7b-beta-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zephyr-7b-beta-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```