File size: 5,184 Bytes
a1caa5d
 
cf3bace
 
a1caa5d
cf3bace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1caa5d
 
 
 
 
6389dde
 
 
 
a1caa5d
6389dde
 
 
 
a1caa5d
6389dde
 
a1caa5d
d1c8f57
 
 
 
 
 
 
 
 
 
 
 
 
 
6389dde
cf3bace
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
language:
- en
license: apache-2.0
pipeline_tag: text-generation
model-index:
- name: Fox-1-1.6B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 27.66
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 7.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.28
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.79
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.87
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 4.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
      name: Open LLM Leaderboard
---

## Model Card for Fox-1-1.6B

> [!IMPORTANT]  
> This model is a base pretrained model which requires further finetuning for most use cases.
> For a more interactive experience, we
> recommend [tensoropera/Fox-1-1.6B-Instruct-v0.1](https://huggingface.co/tensoropera/Fox-1-1.6B-Instruct-v0.1), the
> instruction-tuned version of Fox-1.

Fox-1 is a decoder-only transformer-based small language model (SLM) with 1.6B total parameters developed
by [TensorOpera AI](https://tensoropera.ai/). The model was trained with a 3-stage data curriculum on 3 trillion
tokens of text and code data in 8K sequence length. Fox-1 uses Grouped Query Attention (GQA) with 4 key-value heads and
16 attention heads for faster inference.

For the full details of this model please read
our [release blog post](https://blog.tensoropera.ai/tensoropera-unveils-fox-foundation-model-a-pioneering-open-source-slm-leading-the-way-against-tech-giants).

## Benchmarks

We evaluated Fox-1 on ARC Challenge (25-shot), HellaSwag (10-shot), TruthfulQA (0-shot), MMLU (5-shot),
Winogrande (5-shot), and GSM8k (5-shot). We follow the Open LLM Leaderboard's evaluation setup and report the average
score of the 6 benchmarks. The model was evaluated on a machine with 8*H100 GPUs.

|               | Fox-1-1.6B | Qwen-1.5-1.8B | Gemma-2B | StableLM-2-1.6B | OpenELM-1.1B |
|---------------|------------|---------------|----------|-----------------|--------------|
| GSM8k         | 36.39%     | 34.04%        | 17.06%   | 17.74%          | 2.27%        |
| MMLU          | 43.05%     | 47.15%        | 41.71%   | 39.16%          | 27.28%       |
| ARC Challenge | 41.21%     | 37.20%        | 49.23%   | 44.11%          | 36.26%       |
| HellaSwag     | 62.82%     | 61.55%        | 71.60%   | 70.46%          | 65.23%       |
| TruthfulQA    | 38.66%     | 39.37%        | 33.05%   | 38.77%          | 36.98%       |
| Winogrande    | 60.62%     | 65.51%        | 65.51%   | 65.27%          | 61.64%       |
| Average       | 47.13%     | 46.81%        | 46.36%   | 45.92%          | 38.28%       |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tensoropera__Fox-1-1.6B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 7.69|
|IFEval (0-Shot)    |27.66|
|BBH (3-Shot)       | 7.40|
|MATH Lvl 5 (4-Shot)| 1.28|
|GPQA (0-shot)      | 1.79|
|MuSR (0-shot)      | 3.87|
|MMLU-PRO (5-shot)  | 4.13|