File size: 5,184 Bytes
a1caa5d cf3bace a1caa5d cf3bace a1caa5d 6389dde a1caa5d 6389dde a1caa5d 6389dde a1caa5d d1c8f57 6389dde cf3bace |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
language:
- en
license: apache-2.0
pipeline_tag: text-generation
model-index:
- name: Fox-1-1.6B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 27.66
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 7.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.28
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.79
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.87
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 4.13
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
name: Open LLM Leaderboard
---
## Model Card for Fox-1-1.6B
> [!IMPORTANT]
> This model is a base pretrained model which requires further finetuning for most use cases.
> For a more interactive experience, we
> recommend [tensoropera/Fox-1-1.6B-Instruct-v0.1](https://huggingface.co/tensoropera/Fox-1-1.6B-Instruct-v0.1), the
> instruction-tuned version of Fox-1.
Fox-1 is a decoder-only transformer-based small language model (SLM) with 1.6B total parameters developed
by [TensorOpera AI](https://tensoropera.ai/). The model was trained with a 3-stage data curriculum on 3 trillion
tokens of text and code data in 8K sequence length. Fox-1 uses Grouped Query Attention (GQA) with 4 key-value heads and
16 attention heads for faster inference.
For the full details of this model please read
our [release blog post](https://blog.tensoropera.ai/tensoropera-unveils-fox-foundation-model-a-pioneering-open-source-slm-leading-the-way-against-tech-giants).
## Benchmarks
We evaluated Fox-1 on ARC Challenge (25-shot), HellaSwag (10-shot), TruthfulQA (0-shot), MMLU (5-shot),
Winogrande (5-shot), and GSM8k (5-shot). We follow the Open LLM Leaderboard's evaluation setup and report the average
score of the 6 benchmarks. The model was evaluated on a machine with 8*H100 GPUs.
| | Fox-1-1.6B | Qwen-1.5-1.8B | Gemma-2B | StableLM-2-1.6B | OpenELM-1.1B |
|---------------|------------|---------------|----------|-----------------|--------------|
| GSM8k | 36.39% | 34.04% | 17.06% | 17.74% | 2.27% |
| MMLU | 43.05% | 47.15% | 41.71% | 39.16% | 27.28% |
| ARC Challenge | 41.21% | 37.20% | 49.23% | 44.11% | 36.26% |
| HellaSwag | 62.82% | 61.55% | 71.60% | 70.46% | 65.23% |
| TruthfulQA | 38.66% | 39.37% | 33.05% | 38.77% | 36.98% |
| Winogrande | 60.62% | 65.51% | 65.51% | 65.27% | 61.64% |
| Average | 47.13% | 46.81% | 46.36% | 45.92% | 38.28% |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tensoropera__Fox-1-1.6B)
| Metric |Value|
|-------------------|----:|
|Avg. | 7.69|
|IFEval (0-Shot) |27.66|
|BBH (3-Shot) | 7.40|
|MATH Lvl 5 (4-Shot)| 1.28|
|GPQA (0-shot) | 1.79|
|MuSR (0-shot) | 3.87|
|MMLU-PRO (5-shot) | 4.13|
|