File size: 3,547 Bytes
b7843ec
 
 
 
 
 
 
 
 
 
 
 
868a5e1
b7843ec
 
868a5e1
b7843ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868a5e1
b7843ec
 
 
 
 
 
 
 
 
 
 
868a5e1
b7843ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a409528
 
 
 
 
 
 
 
a05352f
 
 
 
 
 
 
 
b7843ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868a5e1
b7843ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: creativeml-openrail-m
base_model: "terminusresearch/pixart-900m-1024-ft-v0.6"
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - full

inference: true

---

# pixart-900m-1024-ft-v0.7-stage1

This is a full rank finetune derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6).



The main validation prompt used during training was:

```
ethnographic photography of teddy bear at a picnic, ears tucked behind a cozy hoodie looking darkly off to the stormy picnic skies
```

## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.7`
- Steps: `25`
- Sampler: `None`
- Seed: `42`
- Resolutions: `1024x1024,1344x768,916x1152`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).




<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 0
- Training steps: 17000
- Learning rate: 1e-06
- Effective batch size: 192
  - Micro-batch size: 24
  - Gradient accumulation steps: 1
  - Number of GPUs: 8
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used


## Datasets

### photo-concept-bucket
- Repeats: 0
- Total number of images: ~567552
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### text-1mp
- Repeats: 15
- Total number of images: ~13056
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### ideogram
- Repeats: 15
- Total number of images: ~36096
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### midjourney-v6-520k-raw
- Repeats: 0
- Total number of images: ~390912
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### sfwbooru
- Repeats: 0
- Total number of images: ~233664
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### nijijourney-v6-520k-raw
- Repeats: 0
- Total number of images: ~415680
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### dalle3
- Repeats: 0
- Total number of images: ~1121664
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'pixart-900m-1024-ft-v0.7-stage1'
pipeline = DiffusionPipeline.from_pretrained(model_id)

prompt = "ethnographic photography of teddy bear at a picnic, ears tucked behind a cozy hoodie looking darkly off to the stormy picnic skies"
negative_prompt = "blurry, cropped, ugly"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=25,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
```