Text Generation
Transformers
English
Inference Endpoints
File size: 6,428 Bytes
18ac6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
"""Inference_LawyerGPT_Finetune_falcon7b_Indian_Law_Data.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1NpBtrGAcXsmoSmM5Sr-INiE5-tU9D37n

### Install requirements

First, run the cells below to install the requirements:
"""

!nvidia-smi

!pip install -Uqqq pip --progress-bar off
!pip install -qqq bitsandbytes==0.39.0
!pip install -qqq torch--2.0.1 --progress-bar off
!pip install -qqq -U git+https://github.com/huggingface/transformers.git@e03a9cc --progress-bar off
!pip install -qqq -U git+https://github.com/huggingface/peft.git@42a184f --progress-bar off
!pip install -qqq -U git+https://github.com/huggingface/accelerate.git@c9fbb71 --progress-bar off
!pip install -qqq datasets==2.12.0 --progress-bar off
!pip install -qqq loralib==0.1.1 --progress-bar off
!pip install einops

import os
# from pprint import pprint
# import json

import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
    LoraConfig,
    PeftConfig,
    get_peft_model,
    prepare_model_for_kbit_training,
)
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

notebook_login()
#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

"""### Load dataset"""

from datasets import load_dataset

dataset_name = "nisaar/Lawyer_GPT_India"
#dataset_name = "patrick11434/TEST_LLM_DATASET"
dataset = load_dataset(dataset_name, split="train")

"""## Load adapters from the Hub

You can also directly load adapters from the Hub using the commands below:
"""

from peft import *

#change peft_model_id
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    load_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

peft_model_id = "nisaar/falcon7b-Indian_Law_150Prompts"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token


model = PeftModel.from_pretrained(model, peft_model_id)

"""## Inference

You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`.
"""

generation_config = model.generation_config
generation_config.max_new_tokens = 200
generation_config_temperature = 1
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config_eod_token_id = tokenizer.eos_token_id

DEVICE = "cuda:0"

# Commented out IPython magic to ensure Python compatibility.
# %%time
# prompt = f"""
# <human>: Who appoints the Chief Justice of India?
# <assistant>:
# """.strip()
# 
# encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
# with torch.inference_mode():
#   outputs = model.generate(
#       input_ids=encoding.attention_mask,
#       generation_config=generation_config,
#   )
# print(tokenizer.decode(outputs[0],skip_special_tokens=True))

def generate_response(question: str) -> str:
    prompt = f"""
    <human>: {question}
    <assistant>:
    """.strip()
    encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
    with torch.inference_mode():
        outputs = model.generate(
            input_ids=encoding.input_ids,
            attention_mask=encoding.attention_mask,
            generation_config=generation_config,
        )
    response = tokenizer.decode(outputs[0],skip_special_tokens=True)

    assistant_start = '<assistant>:'
    response_start = response.find(assistant_start)
    return response[response_start + len(assistant_start):].strip()

prompt = "Debate the merits and demerits of introducing simultaneous elections in India?"
print(generate_response(prompt))

prompt = "What are the duties of the President of India as per the Constitution?"
print(generate_response(prompt))

prompt = "Write a legal memo on the issue of manual scavenging in light of The Prohibition of Employment as Manual Scavengers and their Rehabilitation Act, 2013."
print(generate_response(prompt))

prompt

prompt = "Explain the concept of 'Separation of Powers' in the Indian Constitution"
print(generate_response(prompt))

prompt = "Can you explain the steps for registration of a trademark in India?"
print(generate_response(prompt))

prompt = "What are the potential implications of the proposed Personal Data Protection Bill on tech companies in India?"
print(generate_response(prompt))

prompt = "Can you draft a non-disclosure agreement (NDA) under Indian law?"
print(generate_response(prompt))

prompt = "Can you summarize the main points of Article 21 of the Indian Constitution?"
print(generate_response(prompt))

prompt = "Can you summarize the main arguments of the Supreme Court of India judgment in Kesavananda Bharati v. State of Kerala?"
print(generate_response(prompt))

prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
print(generate_response(prompt))

prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
print(generate_response(prompt))

prompt = "Can you draft a confidentiality clause for a contract under Indian law?"
print(generate_response(prompt))

prompt = "How is the concept of 'Economic Justice' enshrined in the Preamble of the Indian Constitution??"
print(generate_response(prompt))

prompt = "What is the role of the 'Supreme Court' in preserving the fundamental rights of citizens in India?"
print(generate_response(prompt))

prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
print(generate_response(prompt))

prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
print(generate_response(prompt))

prompt = "Discuss the potential effects of a 'Universal Basic Income' policy in India"
print(generate_response(prompt))

prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
print(generate_response(prompt))