File size: 2,128 Bytes
a26e829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: pyannote/segmentation-3.0
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/simsamu
model-index:
- name: speaker-segmentation-fine-tuned-simsamu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-simsamu
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/simsamu default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2302
- Der: 0.0911
- False Alarm: 0.0236
- Missed Detection: 0.0413
- Confusion: 0.0262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.2179 | 1.0 | 111 | 0.2240 | 0.0964 | 0.0254 | 0.0470 | 0.0240 |
| 0.1678 | 2.0 | 222 | 0.2279 | 0.0943 | 0.0236 | 0.0447 | 0.0260 |
| 0.156 | 3.0 | 333 | 0.2327 | 0.0947 | 0.0222 | 0.0450 | 0.0274 |
| 0.1507 | 4.0 | 444 | 0.2301 | 0.0919 | 0.0237 | 0.0420 | 0.0262 |
| 0.1471 | 5.0 | 555 | 0.2302 | 0.0911 | 0.0236 | 0.0413 | 0.0262 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.19.1
|