--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: whisper-large-v2-medical-9 results: [] --- # whisper-large-v2-medical-9 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.2381 | 20 | 0.5954 | | 0.9678 | 0.4762 | 40 | 0.3312 | | 0.372 | 0.7143 | 60 | 0.1767 | | 0.1657 | 0.9524 | 80 | 0.1568 | | 0.1297 | 1.1905 | 100 | 0.1507 | | 0.1297 | 1.4286 | 120 | 0.1455 | | 0.0923 | 1.6667 | 140 | 0.1403 | | 0.0974 | 1.9048 | 160 | 0.1376 | | 0.0753 | 2.1429 | 180 | 0.1389 | | 0.053 | 2.3810 | 200 | 0.1396 | | 0.053 | 2.6190 | 220 | 0.1384 | | 0.0601 | 2.8571 | 240 | 0.1386 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.18.0 - Tokenizers 0.20.1