Thacio Garcia Scandaroli
commited on
Commit
·
fc5fc1f
1
Parent(s):
b97b8f4
Upload 13 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +113 -0
- added_tokens.json +106 -0
- config.json +39 -0
- config_sentence_transformers.json +7 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +110 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 512,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
*This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.*
|
14 |
+
|
15 |
+
Este modelo é do tipo [sentence-transformers](https://www.SBERT.net) baseado no modelo [thacio/ult5-pt-small](https://huggingface.co/thacio/ult5-pt-small). Ele mapeia sentenças e parágrafos para vetores denso de dimensão 512, e pode ser utilizado para clustering, similaridades entre textos um busca semântica.
|
16 |
+
|
17 |
+
| Model | Parameters |
|
18 |
+
| :-: | :-: |
|
19 |
+
| [thacio/ult5-pt-small](https://huggingface.co/thacio/ult5-pt-small) | 82.4M |
|
20 |
+
| [thacio/ult5-pt-small](https://huggingface.co/thacio/ult5-pt-small) | 82.4M |
|
21 |
+
|
22 |
+
## Use cases
|
23 |
+
|
24 |
+
Os modelos [sentence-transformers](https://www.SBERT.net) geram *embeddings* do texto de melhor qualidade do que utilizar embeddings diretamente de encoders como BERT ou T5.
|
25 |
+
|
26 |
+
Possíveis aplicações para o modelo são:
|
27 |
+
*Possible use cases*:
|
28 |
+
- [Clustering](https://www.sbert.net/examples/applications/clustering/README.html)
|
29 |
+
- [Semantic Textual Similarity](https://www.sbert.net/docs/usage/semantic_textual_similarity.html)
|
30 |
+
- [Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
|
31 |
+
- [Retrieve & Re-Rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)
|
32 |
+
- [Paraphrase Mining](https://www.sbert.net/examples/applications/paraphrase-mining/README.html)
|
33 |
+
|
34 |
+
## Usage (Sentence-Transformers)
|
35 |
+
|
36 |
+
O modo mais simples de uso é utilizar a biblioteca [sentence-transformers](https://www.SBERT.net):
|
37 |
+
|
38 |
+
*Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:*
|
39 |
+
|
40 |
+
```
|
41 |
+
pip install -U sentence-transformers
|
42 |
+
```
|
43 |
+
|
44 |
+
Para obter o embeddings:
|
45 |
+
|
46 |
+
*Then you can use the model like this:*
|
47 |
+
|
48 |
+
```python
|
49 |
+
from sentence_transformers import SentenceTransformer
|
50 |
+
sentences = ["Este é um exemplo de sentença", "A sentença é convertida em um texto de dimensão 513"]
|
51 |
+
|
52 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
53 |
+
embeddings = model.encode(sentences)
|
54 |
+
print(embeddings)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Usage (HuggingFace Transformers)
|
58 |
+
|
59 |
+
É possível utilizar o modelo apenas com a biblioteca transfomers: Primeiro, passa-se o texto pelo modelo, e em seguida se aplica a operação de *right pooling* aos embeddings contextuais do texto.
|
60 |
+
|
61 |
+
*Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.*
|
62 |
+
|
63 |
+
```python
|
64 |
+
from transformers import AutoTokenizer, AutoModel
|
65 |
+
import torch
|
66 |
+
|
67 |
+
|
68 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
69 |
+
def mean_pooling(model_output, attention_mask):
|
70 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
71 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
72 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
73 |
+
|
74 |
+
|
75 |
+
# Sentences we want sentence embeddings for
|
76 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
77 |
+
|
78 |
+
# Load model from HuggingFace Hub
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
80 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
81 |
+
|
82 |
+
# Tokenize sentences
|
83 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
84 |
+
|
85 |
+
# Compute token embeddings
|
86 |
+
with torch.no_grad():
|
87 |
+
model_output = model(**encoded_input)
|
88 |
+
|
89 |
+
# Perform pooling. In this case, mean pooling.
|
90 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
91 |
+
|
92 |
+
print("Sentence embeddings:")
|
93 |
+
print(sentence_embeddings)
|
94 |
+
```
|
95 |
+
|
96 |
+
|
97 |
+
# Full Model Architecture
|
98 |
+
```
|
99 |
+
SentenceTransformerGradAcum(
|
100 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: T5EncoderModel
|
101 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
102 |
+
)
|
103 |
+
```
|
104 |
+
|
105 |
+
## Citation
|
106 |
+
|
107 |
+
```bibtex
|
108 |
+
@misc{ult5-pt2023,
|
109 |
+
author = {Thacio Garcia Scandaroli},
|
110 |
+
title = {ULT5-pt: Portuguese Language Model trained with UL2},
|
111 |
+
year = {2023},
|
112 |
+
}
|
113 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|NLG|>": 50260,
|
3 |
+
"<|NLU|>": 50259,
|
4 |
+
"<|beginoftext|>": 50257,
|
5 |
+
"<|extra_id_0|>": 50261,
|
6 |
+
"<|extra_id_10|>": 50271,
|
7 |
+
"<|extra_id_11|>": 50272,
|
8 |
+
"<|extra_id_12|>": 50273,
|
9 |
+
"<|extra_id_13|>": 50274,
|
10 |
+
"<|extra_id_14|>": 50275,
|
11 |
+
"<|extra_id_15|>": 50276,
|
12 |
+
"<|extra_id_16|>": 50277,
|
13 |
+
"<|extra_id_17|>": 50278,
|
14 |
+
"<|extra_id_18|>": 50279,
|
15 |
+
"<|extra_id_19|>": 50280,
|
16 |
+
"<|extra_id_1|>": 50262,
|
17 |
+
"<|extra_id_20|>": 50281,
|
18 |
+
"<|extra_id_21|>": 50282,
|
19 |
+
"<|extra_id_22|>": 50283,
|
20 |
+
"<|extra_id_23|>": 50284,
|
21 |
+
"<|extra_id_24|>": 50285,
|
22 |
+
"<|extra_id_25|>": 50286,
|
23 |
+
"<|extra_id_26|>": 50287,
|
24 |
+
"<|extra_id_27|>": 50288,
|
25 |
+
"<|extra_id_28|>": 50289,
|
26 |
+
"<|extra_id_29|>": 50290,
|
27 |
+
"<|extra_id_2|>": 50263,
|
28 |
+
"<|extra_id_30|>": 50291,
|
29 |
+
"<|extra_id_31|>": 50292,
|
30 |
+
"<|extra_id_32|>": 50293,
|
31 |
+
"<|extra_id_33|>": 50294,
|
32 |
+
"<|extra_id_34|>": 50295,
|
33 |
+
"<|extra_id_35|>": 50296,
|
34 |
+
"<|extra_id_36|>": 50297,
|
35 |
+
"<|extra_id_37|>": 50298,
|
36 |
+
"<|extra_id_38|>": 50299,
|
37 |
+
"<|extra_id_39|>": 50300,
|
38 |
+
"<|extra_id_3|>": 50264,
|
39 |
+
"<|extra_id_40|>": 50301,
|
40 |
+
"<|extra_id_41|>": 50302,
|
41 |
+
"<|extra_id_42|>": 50303,
|
42 |
+
"<|extra_id_43|>": 50304,
|
43 |
+
"<|extra_id_44|>": 50305,
|
44 |
+
"<|extra_id_45|>": 50306,
|
45 |
+
"<|extra_id_46|>": 50307,
|
46 |
+
"<|extra_id_47|>": 50308,
|
47 |
+
"<|extra_id_48|>": 50309,
|
48 |
+
"<|extra_id_49|>": 50310,
|
49 |
+
"<|extra_id_4|>": 50265,
|
50 |
+
"<|extra_id_50|>": 50311,
|
51 |
+
"<|extra_id_51|>": 50312,
|
52 |
+
"<|extra_id_52|>": 50313,
|
53 |
+
"<|extra_id_53|>": 50314,
|
54 |
+
"<|extra_id_54|>": 50315,
|
55 |
+
"<|extra_id_55|>": 50316,
|
56 |
+
"<|extra_id_56|>": 50317,
|
57 |
+
"<|extra_id_57|>": 50318,
|
58 |
+
"<|extra_id_58|>": 50319,
|
59 |
+
"<|extra_id_59|>": 50320,
|
60 |
+
"<|extra_id_5|>": 50266,
|
61 |
+
"<|extra_id_60|>": 50321,
|
62 |
+
"<|extra_id_61|>": 50322,
|
63 |
+
"<|extra_id_62|>": 50323,
|
64 |
+
"<|extra_id_63|>": 50324,
|
65 |
+
"<|extra_id_64|>": 50325,
|
66 |
+
"<|extra_id_65|>": 50326,
|
67 |
+
"<|extra_id_66|>": 50327,
|
68 |
+
"<|extra_id_67|>": 50328,
|
69 |
+
"<|extra_id_68|>": 50329,
|
70 |
+
"<|extra_id_69|>": 50330,
|
71 |
+
"<|extra_id_6|>": 50267,
|
72 |
+
"<|extra_id_70|>": 50331,
|
73 |
+
"<|extra_id_71|>": 50332,
|
74 |
+
"<|extra_id_72|>": 50333,
|
75 |
+
"<|extra_id_73|>": 50334,
|
76 |
+
"<|extra_id_74|>": 50335,
|
77 |
+
"<|extra_id_75|>": 50336,
|
78 |
+
"<|extra_id_76|>": 50337,
|
79 |
+
"<|extra_id_77|>": 50338,
|
80 |
+
"<|extra_id_78|>": 50339,
|
81 |
+
"<|extra_id_79|>": 50340,
|
82 |
+
"<|extra_id_7|>": 50268,
|
83 |
+
"<|extra_id_80|>": 50341,
|
84 |
+
"<|extra_id_81|>": 50342,
|
85 |
+
"<|extra_id_82|>": 50343,
|
86 |
+
"<|extra_id_83|>": 50344,
|
87 |
+
"<|extra_id_84|>": 50345,
|
88 |
+
"<|extra_id_85|>": 50346,
|
89 |
+
"<|extra_id_86|>": 50347,
|
90 |
+
"<|extra_id_87|>": 50348,
|
91 |
+
"<|extra_id_88|>": 50349,
|
92 |
+
"<|extra_id_89|>": 50350,
|
93 |
+
"<|extra_id_8|>": 50269,
|
94 |
+
"<|extra_id_90|>": 50351,
|
95 |
+
"<|extra_id_91|>": 50352,
|
96 |
+
"<|extra_id_92|>": 50353,
|
97 |
+
"<|extra_id_93|>": 50354,
|
98 |
+
"<|extra_id_94|>": 50355,
|
99 |
+
"<|extra_id_95|>": 50356,
|
100 |
+
"<|extra_id_96|>": 50357,
|
101 |
+
"<|extra_id_97|>": 50358,
|
102 |
+
"<|extra_id_98|>": 50359,
|
103 |
+
"<|extra_id_99|>": 50360,
|
104 |
+
"<|extra_id_9|>": 50270,
|
105 |
+
"<|unk|>": 50258
|
106 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "thacio/ult5-pt-small",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"bos_token_id": 50257,
|
7 |
+
"d_ff": 2048,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 512,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "silu",
|
12 |
+
"dropout": 0.1,
|
13 |
+
"dropout_rate": 0.1,
|
14 |
+
"eos_token_id": 1,
|
15 |
+
"feed_forward_proj": "gated-silu",
|
16 |
+
"initializer_factor": 1.0,
|
17 |
+
"is_encoder_decoder": true,
|
18 |
+
"is_gated_act": true,
|
19 |
+
"layer_norm_epsilon": 1e-06,
|
20 |
+
"model_type": "t5",
|
21 |
+
"n_positions": 1024,
|
22 |
+
"num_decoder_layers": 6,
|
23 |
+
"num_heads": 8,
|
24 |
+
"num_layers": 6,
|
25 |
+
"output_past": true,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"relative_attention_max_distance": 128,
|
28 |
+
"relative_attention_num_buckets": 32,
|
29 |
+
"task_specific_params": {
|
30 |
+
"text-generation": {
|
31 |
+
"do_sample": true,
|
32 |
+
"max_length": 50
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.28.0",
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 50361
|
39 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.0",
|
5 |
+
"pytorch": "2.0.0+cu118"
|
6 |
+
}
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b46053a77b6d5151882139ba207c688225828439beadfc5182e700d1a4010e3d
|
3 |
+
size 203849692
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 1024,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|NLU|>",
|
4 |
+
"<|NLG|>",
|
5 |
+
"<|extra_id_0|>",
|
6 |
+
"<|extra_id_1|>",
|
7 |
+
"<|extra_id_2|>",
|
8 |
+
"<|extra_id_3|>",
|
9 |
+
"<|extra_id_4|>",
|
10 |
+
"<|extra_id_5|>",
|
11 |
+
"<|extra_id_6|>",
|
12 |
+
"<|extra_id_7|>",
|
13 |
+
"<|extra_id_8|>",
|
14 |
+
"<|extra_id_9|>",
|
15 |
+
"<|extra_id_10|>",
|
16 |
+
"<|extra_id_11|>",
|
17 |
+
"<|extra_id_12|>",
|
18 |
+
"<|extra_id_13|>",
|
19 |
+
"<|extra_id_14|>",
|
20 |
+
"<|extra_id_15|>",
|
21 |
+
"<|extra_id_16|>",
|
22 |
+
"<|extra_id_17|>",
|
23 |
+
"<|extra_id_18|>",
|
24 |
+
"<|extra_id_19|>",
|
25 |
+
"<|extra_id_20|>",
|
26 |
+
"<|extra_id_21|>",
|
27 |
+
"<|extra_id_22|>",
|
28 |
+
"<|extra_id_23|>",
|
29 |
+
"<|extra_id_24|>",
|
30 |
+
"<|extra_id_25|>",
|
31 |
+
"<|extra_id_26|>",
|
32 |
+
"<|extra_id_27|>",
|
33 |
+
"<|extra_id_28|>",
|
34 |
+
"<|extra_id_29|>",
|
35 |
+
"<|extra_id_30|>",
|
36 |
+
"<|extra_id_31|>",
|
37 |
+
"<|extra_id_32|>",
|
38 |
+
"<|extra_id_33|>",
|
39 |
+
"<|extra_id_34|>",
|
40 |
+
"<|extra_id_35|>",
|
41 |
+
"<|extra_id_36|>",
|
42 |
+
"<|extra_id_37|>",
|
43 |
+
"<|extra_id_38|>",
|
44 |
+
"<|extra_id_39|>",
|
45 |
+
"<|extra_id_40|>",
|
46 |
+
"<|extra_id_41|>",
|
47 |
+
"<|extra_id_42|>",
|
48 |
+
"<|extra_id_43|>",
|
49 |
+
"<|extra_id_44|>",
|
50 |
+
"<|extra_id_45|>",
|
51 |
+
"<|extra_id_46|>",
|
52 |
+
"<|extra_id_47|>",
|
53 |
+
"<|extra_id_48|>",
|
54 |
+
"<|extra_id_49|>",
|
55 |
+
"<|extra_id_50|>",
|
56 |
+
"<|extra_id_51|>",
|
57 |
+
"<|extra_id_52|>",
|
58 |
+
"<|extra_id_53|>",
|
59 |
+
"<|extra_id_54|>",
|
60 |
+
"<|extra_id_55|>",
|
61 |
+
"<|extra_id_56|>",
|
62 |
+
"<|extra_id_57|>",
|
63 |
+
"<|extra_id_58|>",
|
64 |
+
"<|extra_id_59|>",
|
65 |
+
"<|extra_id_60|>",
|
66 |
+
"<|extra_id_61|>",
|
67 |
+
"<|extra_id_62|>",
|
68 |
+
"<|extra_id_63|>",
|
69 |
+
"<|extra_id_64|>",
|
70 |
+
"<|extra_id_65|>",
|
71 |
+
"<|extra_id_66|>",
|
72 |
+
"<|extra_id_67|>",
|
73 |
+
"<|extra_id_68|>",
|
74 |
+
"<|extra_id_69|>",
|
75 |
+
"<|extra_id_70|>",
|
76 |
+
"<|extra_id_71|>",
|
77 |
+
"<|extra_id_72|>",
|
78 |
+
"<|extra_id_73|>",
|
79 |
+
"<|extra_id_74|>",
|
80 |
+
"<|extra_id_75|>",
|
81 |
+
"<|extra_id_76|>",
|
82 |
+
"<|extra_id_77|>",
|
83 |
+
"<|extra_id_78|>",
|
84 |
+
"<|extra_id_79|>",
|
85 |
+
"<|extra_id_80|>",
|
86 |
+
"<|extra_id_81|>",
|
87 |
+
"<|extra_id_82|>",
|
88 |
+
"<|extra_id_83|>",
|
89 |
+
"<|extra_id_84|>",
|
90 |
+
"<|extra_id_85|>",
|
91 |
+
"<|extra_id_86|>",
|
92 |
+
"<|extra_id_87|>",
|
93 |
+
"<|extra_id_88|>",
|
94 |
+
"<|extra_id_89|>",
|
95 |
+
"<|extra_id_90|>",
|
96 |
+
"<|extra_id_91|>",
|
97 |
+
"<|extra_id_92|>",
|
98 |
+
"<|extra_id_93|>",
|
99 |
+
"<|extra_id_94|>",
|
100 |
+
"<|extra_id_95|>",
|
101 |
+
"<|extra_id_96|>",
|
102 |
+
"<|extra_id_97|>",
|
103 |
+
"<|extra_id_98|>",
|
104 |
+
"<|extra_id_99|>"
|
105 |
+
],
|
106 |
+
"bos_token": "<|beginoftext|>",
|
107 |
+
"eos_token": "<|endoftext|>",
|
108 |
+
"pad_token": "<|pad|>",
|
109 |
+
"unk_token": "<|unk|>"
|
110 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"additional_special_tokens": [
|
4 |
+
"<|pad|>",
|
5 |
+
"<|endoftext|>"
|
6 |
+
],
|
7 |
+
"bos_token": "<|pad|>",
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"eos_token": "<|pad|>",
|
10 |
+
"model_max_length": 1024,
|
11 |
+
"tokenizer_class": "GPT2Tokenizer",
|
12 |
+
"unk_token": "<|pad|>"
|
13 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|