th041 commited on
Commit
0348455
·
verified ·
1 Parent(s): 4aa3fed

Model save

Browse files
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-weldclassifyv4
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8920863309352518
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-weldclassifyv4
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5885
36
+ - Accuracy: 0.8921
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 13
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
68
+ | 1.1598 | 0.6410 | 100 | 1.2082 | 0.4245 |
69
+ | 0.8688 | 1.2821 | 200 | 1.0834 | 0.5036 |
70
+ | 0.7211 | 1.9231 | 300 | 0.5981 | 0.7662 |
71
+ | 0.8013 | 2.5641 | 400 | 1.0970 | 0.5719 |
72
+ | 0.2789 | 3.2051 | 500 | 0.4212 | 0.8489 |
73
+ | 0.2397 | 3.8462 | 600 | 0.3963 | 0.8741 |
74
+ | 0.1034 | 4.4872 | 700 | 0.4437 | 0.8741 |
75
+ | 0.0448 | 5.1282 | 800 | 0.4933 | 0.8597 |
76
+ | 0.0473 | 5.7692 | 900 | 0.4663 | 0.8741 |
77
+ | 0.074 | 6.4103 | 1000 | 0.6667 | 0.8453 |
78
+ | 0.0488 | 7.0513 | 1100 | 0.5352 | 0.8885 |
79
+ | 0.0486 | 7.6923 | 1200 | 0.5648 | 0.8885 |
80
+ | 0.0045 | 8.3333 | 1300 | 0.5992 | 0.8885 |
81
+ | 0.0912 | 8.9744 | 1400 | 0.5750 | 0.8705 |
82
+ | 0.0332 | 9.6154 | 1500 | 0.5407 | 0.9029 |
83
+ | 0.005 | 10.2564 | 1600 | 0.5689 | 0.8885 |
84
+ | 0.0028 | 10.8974 | 1700 | 0.5718 | 0.8921 |
85
+ | 0.0027 | 11.5385 | 1800 | 0.5849 | 0.8957 |
86
+ | 0.0025 | 12.1795 | 1900 | 0.5870 | 0.8921 |
87
+ | 0.0024 | 12.8205 | 2000 | 0.5885 | 0.8921 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.41.2
93
+ - Pytorch 2.3.0+cu121
94
+ - Datasets 2.20.0
95
+ - Tokenizers 0.19.1
data/events.out.tfevents.1719215053.8e7f3bc735b3.193.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84f7cfd687b1ee6aa0a141c3def3c7e1e945c4d9aad19477ce989313faf29fb1
3
- size 53416
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e8fdd3f2539b9f7989a81183a124ced7a45ac1784be547a450471ca361569ff
3
+ size 54192
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc852cf730ccb1e46e4edf7b6cab62e66eb029bd19ce7f2bd88891e1f08fbda1
3
  size 343230128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b93e97d307db74d14db0be2db632bf6b362b171084ba782748ff44d59e27dd6
3
  size 343230128