Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
library_name: transformers
|
3 |
tags: []
|
4 |
widget:
|
5 |
-
- text: 'Please correct the following sentence: '
|
6 |
example_title: Spelling Correction
|
7 |
---
|
8 |
|
@@ -68,7 +68,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
68 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
69 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
70 |
|
71 |
-
input_text = "Please correct the following sentence: "
|
72 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
73 |
|
74 |
outputs = model.generate(input_ids)
|
@@ -89,7 +89,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
89 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
90 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto")
|
91 |
|
92 |
-
input_text = "Please correct the following sentence: "
|
93 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
94 |
|
95 |
outputs = model.generate(input_ids)
|
@@ -113,7 +113,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
113 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
114 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", torch_dtype=torch.float16)
|
115 |
|
116 |
-
input_text = "Please correct the following sentence: "
|
117 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
118 |
|
119 |
outputs = model.generate(input_ids)
|
@@ -134,7 +134,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
134 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
135 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", load_in_8bit=True)
|
136 |
|
137 |
-
input_text = "Please correct the following sentence: "
|
138 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
139 |
|
140 |
outputs = model.generate(input_ids)
|
|
|
2 |
library_name: transformers
|
3 |
tags: []
|
4 |
widget:
|
5 |
+
- text: 'Please correct the following sentence: ukuti yiles sivnmelwano'
|
6 |
example_title: Spelling Correction
|
7 |
---
|
8 |
|
|
|
68 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
69 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
70 |
|
71 |
+
input_text = "Please correct the following sentence: ukuti yiles sivnmelwano"
|
72 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
73 |
|
74 |
outputs = model.generate(input_ids)
|
|
|
89 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
90 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto")
|
91 |
|
92 |
+
input_text = "Please correct the following sentence: ukuti yiles sivnmelwano"
|
93 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
94 |
|
95 |
outputs = model.generate(input_ids)
|
|
|
113 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
114 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", torch_dtype=torch.float16)
|
115 |
|
116 |
+
input_text = "Please correct the following sentence: ukuti yiles sivnmelwano"
|
117 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
118 |
|
119 |
outputs = model.generate(input_ids)
|
|
|
134 |
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele")
|
135 |
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", load_in_8bit=True)
|
136 |
|
137 |
+
input_text = "Please correct the following sentence: ukuti yiles sivnmelwano"
|
138 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
139 |
|
140 |
outputs = model.generate(input_ids)
|