--- library_name: transformers tags: [] widget: - text: 'Please correct the following sentence: ukuti yiles sivnmelwano' example_title: Spelling Correction --- # Model Card for T5-Ndebele-SC drawing ## Model Details ### Model Description - **Developed by:** [Thabolezwe Mabandla](http://www.linkedin.com/in/thabolezwe-mabandla-81a62a22b) - **Model type:** Language Model - **Language(s) (NLP):** Ndebele - **Finetuned from model:** [FLAN-T5](https://huggingface.co/google/flan-t5-small) ### Model Sources - **Repository:** [More Information Needed] - **Paper:** [More Information Needed] - **Demo:** [More Information Needed] ## Uses > Correction of spelling errors in ndebele sentences or phrases. ### Direct Use > Spelling correction # Bias, Risks, and Limitations The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf): > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application. ## Ethical considerations and risks > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data. ## How to Get Started with the Model Use the code below to get started with the model. ### Running the model on a CPU
Click to expand ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele") model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele") input_text = "Please correct the following sentence: ukuti yiles sivnmelwano" input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU
Click to expand ```python # pip install accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele") model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto") input_text = "Please correct the following sentence: ukuti yiles sivnmelwano" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU using different precisions #### FP16
Click to expand ```python # pip install accelerate import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele") model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", torch_dtype=torch.float16) input_text = "Please correct the following sentence: ukuti yiles sivnmelwano" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
#### INT8
Click to expand ```python # pip install bitsandbytes accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector-ndebele") model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector-ndebele", device_map="auto", load_in_8bit=True) input_text = "Please correct the following sentence: ukuti yiles sivnmelwano" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
## Evaluation ### Testing Metrics #### Metrics metrics ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [T4 GPU x 2] - **Hours used:** [8] - **Cloud Provider:** [Kaggle] ## Model Card Authors Thabolezwe Mabandla ## Model Card Contact mabandlathaboe2@gmail.com