thaboe01 commited on
Commit
5371262
1 Parent(s): c3be920

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -111
README.md CHANGED
@@ -6,10 +6,11 @@ widget:
6
  example_title: Spelling Correction
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
-
 
13
 
14
 
15
  ## Model Details
@@ -18,15 +19,10 @@ widget:
18
 
19
  <!-- Provide a longer summary of what this model is. -->
20
 
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
 
31
  ### Model Sources [optional]
32
 
@@ -39,107 +35,126 @@ This is the model card of a 🤗 transformers model that has been pushed on the
39
  ## Uses
40
 
41
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
42
 
43
  ### Direct Use
44
 
45
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
46
 
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
 
65
- [More Information Needed]
66
 
67
- ### Recommendations
68
 
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
 
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
 
73
  ## How to Get Started with the Model
74
 
75
  Use the code below to get started with the model.
76
 
77
- [More Information Needed]
78
 
79
- ## Training Details
 
80
 
81
- ### Training Data
82
 
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
 
85
- [More Information Needed]
 
86
 
87
- ### Training Procedure
 
88
 
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
90
 
91
- #### Preprocessing [optional]
92
 
93
- [More Information Needed]
94
 
 
 
95
 
96
- #### Training Hyperparameters
 
 
97
 
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
99
 
100
- #### Speeds, Sizes, Times [optional]
 
101
 
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
103
 
104
- [More Information Needed]
105
 
106
- ## Evaluation
107
 
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
 
110
- ### Testing Data, Factors & Metrics
 
111
 
112
- #### Testing Data
 
 
 
113
 
114
- <!-- This should link to a Dataset Card if possible. -->
 
115
 
116
- [More Information Needed]
 
117
 
118
- #### Factors
 
 
119
 
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
 
122
- [More Information Needed]
123
 
124
- #### Metrics
 
125
 
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
127
 
128
- [More Information Needed]
 
129
 
130
- ### Results
 
 
131
 
132
- [More Information Needed]
133
 
134
- #### Summary
135
 
 
136
 
 
137
 
138
- ## Model Examination [optional]
139
 
140
- <!-- Relevant interpretability work for the model goes here -->
141
 
142
- [More Information Needed]
 
 
143
 
144
  ## Environmental Impact
145
 
@@ -147,56 +162,14 @@ Use the code below to get started with the model.
147
 
148
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
 
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
-
156
- ## Technical Specifications [optional]
157
-
158
- ### Model Architecture and Objective
159
-
160
- [More Information Needed]
161
-
162
- ### Compute Infrastructure
163
-
164
- [More Information Needed]
165
-
166
- #### Hardware
167
-
168
- [More Information Needed]
169
-
170
- #### Software
171
-
172
- [More Information Needed]
173
-
174
- ## Citation [optional]
175
-
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
-
178
- **BibTeX:**
179
-
180
- [More Information Needed]
181
-
182
- **APA:**
183
-
184
- [More Information Needed]
185
-
186
- ## Glossary [optional]
187
-
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
-
190
- [More Information Needed]
191
-
192
- ## More Information [optional]
193
-
194
- [More Information Needed]
195
 
196
  ## Model Card Authors [optional]
197
 
198
- [More Information Needed]
199
 
200
  ## Model Card Contact
201
 
202
- [More Information Needed]
 
6
  example_title: Spelling Correction
7
  ---
8
 
9
+ # Model Card for T5-Shona-SC
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg"
13
+ alt="drawing" width="600"/>
14
 
15
 
16
  ## Model Details
 
19
 
20
  <!-- Provide a longer summary of what this model is. -->
21
 
22
+ - **Developed by:** [Thabolezwe Mabandla](http://www.linkedin.com/in/thabolezwe-mabandla-81a62a22b)
23
+ - **Model type:** Language Model
24
+ - **Language(s) (NLP):** Shona
25
+ - **Finetuned from model [optional]:** [FLAN-T5](https://huggingface.co/google/flan-t5-small)
 
 
 
 
 
26
 
27
  ### Model Sources [optional]
28
 
 
35
  ## Uses
36
 
37
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+ > Correction of spelling errors in shona sentences or phrases.
39
 
40
  ### Direct Use
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+ > Spelling correction
44
 
45
+ # Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
48
 
49
+ > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
50
 
51
+ ## Ethical considerations and risks
52
 
53
+ > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
54
 
55
  ## How to Get Started with the Model
56
 
57
  Use the code below to get started with the model.
58
 
59
+ ### Running the model on a CPU
60
 
61
+ <details>
62
+ <summary> Click to expand </summary>
63
 
64
+ ```python
65
 
66
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
67
 
68
+ tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
69
+ model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector")
70
 
71
+ input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
72
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
73
 
74
+ outputs = model.generate(input_ids)
75
+ print(tokenizer.decode(outputs[0]))
76
+ ```
77
 
78
+ </details>
79
 
80
+ ### Running the model on a GPU
81
 
82
+ <details>
83
+ <summary> Click to expand </summary>
84
 
85
+ ```python
86
+ # pip install accelerate
87
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
88
 
89
+ tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
90
+ model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto")
91
 
92
+ input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
93
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
94
 
95
+ outputs = model.generate(input_ids)
96
+ print(tokenizer.decode(outputs[0]))
97
+ ```
98
 
99
+ </details>
100
 
101
+ ### Running the model on a GPU using different precisions
102
 
103
+ #### FP16
104
 
105
+ <details>
106
+ <summary> Click to expand </summary>
107
 
108
+ ```python
109
+ # pip install accelerate
110
+ import torch
111
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
112
 
113
+ tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
114
+ model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto", torch_dtype=torch.float16)
115
 
116
+ input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
117
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
118
 
119
+ outputs = model.generate(input_ids)
120
+ print(tokenizer.decode(outputs[0]))
121
+ ```
122
 
123
+ </details>
124
 
125
+ #### INT8
126
 
127
+ <details>
128
+ <summary> Click to expand </summary>
129
 
130
+ ```python
131
+ # pip install bitsandbytes accelerate
132
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
133
+
134
+ tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
135
+ model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto", load_in_8bit=True)
136
 
137
+ input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
138
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
139
 
140
+ outputs = model.generate(input_ids)
141
+ print(tokenizer.decode(outputs[0]))
142
+ ```
143
 
144
+ </details>
145
 
 
146
 
147
+ ## Evaluation
148
 
149
+ <!-- This section describes the evaluation protocols and provides the results. -->
150
 
151
+ ### Testing Metrics
152
 
153
+ #### Metrics
154
 
155
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
156
+ <img src=""
157
+ alt="metrics" width="600"/>
158
 
159
  ## Environmental Impact
160
 
 
162
 
163
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
164
 
165
+ - **Hardware Type:** [T4 GPU x 2]
166
+ - **Hours used:** [8]
167
+ - **Cloud Provider:** [Kaggle]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
  ## Model Card Authors [optional]
170
 
171
+ Thabolezwe Mabandla
172
 
173
  ## Model Card Contact
174
 
175