Update README.md
Browse files
README.md
CHANGED
@@ -6,10 +6,11 @@ widget:
|
|
6 |
example_title: Spelling Correction
|
7 |
---
|
8 |
|
9 |
-
# Model Card for
|
10 |
|
11 |
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
-
|
|
|
13 |
|
14 |
|
15 |
## Model Details
|
@@ -18,15 +19,10 @@ widget:
|
|
18 |
|
19 |
<!-- Provide a longer summary of what this model is. -->
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **Shared by [optional]:** [More Information Needed]
|
26 |
-
- **Model type:** [More Information Needed]
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
|
31 |
### Model Sources [optional]
|
32 |
|
@@ -39,107 +35,126 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
39 |
## Uses
|
40 |
|
41 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
|
|
42 |
|
43 |
### Direct Use
|
44 |
|
45 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
### Downstream Use [optional]
|
50 |
-
|
51 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
-
|
55 |
-
### Out-of-Scope Use
|
56 |
-
|
57 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
-
|
61 |
-
## Bias, Risks, and Limitations
|
62 |
-
|
63 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
64 |
|
65 |
-
[
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
|
73 |
## How to Get Started with the Model
|
74 |
|
75 |
Use the code below to get started with the model.
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
|
93 |
-
|
94 |
|
|
|
|
|
95 |
|
96 |
-
|
|
|
|
|
97 |
|
98 |
-
|
|
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
-
|
|
|
|
|
103 |
|
104 |
-
|
105 |
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
-
|
|
|
111 |
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
-
|
|
|
115 |
|
116 |
-
|
|
|
117 |
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
|
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
|
|
129 |
|
130 |
-
|
|
|
|
|
131 |
|
132 |
-
|
133 |
|
134 |
-
#### Summary
|
135 |
|
|
|
136 |
|
|
|
137 |
|
138 |
-
|
139 |
|
140 |
-
|
141 |
|
142 |
-
|
|
|
|
|
143 |
|
144 |
## Environmental Impact
|
145 |
|
@@ -147,56 +162,14 @@ Use the code below to get started with the model.
|
|
147 |
|
148 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
149 |
|
150 |
-
- **Hardware Type:** [
|
151 |
-
- **Hours used:** [
|
152 |
-
- **Cloud Provider:** [
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
-
|
156 |
-
## Technical Specifications [optional]
|
157 |
-
|
158 |
-
### Model Architecture and Objective
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Compute Infrastructure
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Hardware
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
#### Software
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
-
**BibTeX:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
**APA:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
## Glossary [optional]
|
187 |
-
|
188 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## More Information [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
|
196 |
## Model Card Authors [optional]
|
197 |
|
198 |
-
|
199 |
|
200 |
## Model Card Contact
|
201 |
|
202 |
-
|
|
|
6 |
example_title: Spelling Correction
|
7 |
---
|
8 |
|
9 |
+
# Model Card for T5-Shona-SC
|
10 |
|
11 |
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg"
|
13 |
+
alt="drawing" width="600"/>
|
14 |
|
15 |
|
16 |
## Model Details
|
|
|
19 |
|
20 |
<!-- Provide a longer summary of what this model is. -->
|
21 |
|
22 |
+
- **Developed by:** [Thabolezwe Mabandla](http://www.linkedin.com/in/thabolezwe-mabandla-81a62a22b)
|
23 |
+
- **Model type:** Language Model
|
24 |
+
- **Language(s) (NLP):** Shona
|
25 |
+
- **Finetuned from model [optional]:** [FLAN-T5](https://huggingface.co/google/flan-t5-small)
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
### Model Sources [optional]
|
28 |
|
|
|
35 |
## Uses
|
36 |
|
37 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
> Correction of spelling errors in shona sentences or phrases.
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
> Spelling correction
|
44 |
|
45 |
+
# Bias, Risks, and Limitations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
|
48 |
|
49 |
+
> Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
|
50 |
|
51 |
+
## Ethical considerations and risks
|
52 |
|
53 |
+
> Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
|
54 |
|
55 |
## How to Get Started with the Model
|
56 |
|
57 |
Use the code below to get started with the model.
|
58 |
|
59 |
+
### Running the model on a CPU
|
60 |
|
61 |
+
<details>
|
62 |
+
<summary> Click to expand </summary>
|
63 |
|
64 |
+
```python
|
65 |
|
66 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
67 |
|
68 |
+
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
|
69 |
+
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector")
|
70 |
|
71 |
+
input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
|
72 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
73 |
|
74 |
+
outputs = model.generate(input_ids)
|
75 |
+
print(tokenizer.decode(outputs[0]))
|
76 |
+
```
|
77 |
|
78 |
+
</details>
|
79 |
|
80 |
+
### Running the model on a GPU
|
81 |
|
82 |
+
<details>
|
83 |
+
<summary> Click to expand </summary>
|
84 |
|
85 |
+
```python
|
86 |
+
# pip install accelerate
|
87 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
88 |
|
89 |
+
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
|
90 |
+
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto")
|
91 |
|
92 |
+
input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
|
93 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
94 |
|
95 |
+
outputs = model.generate(input_ids)
|
96 |
+
print(tokenizer.decode(outputs[0]))
|
97 |
+
```
|
98 |
|
99 |
+
</details>
|
100 |
|
101 |
+
### Running the model on a GPU using different precisions
|
102 |
|
103 |
+
#### FP16
|
104 |
|
105 |
+
<details>
|
106 |
+
<summary> Click to expand </summary>
|
107 |
|
108 |
+
```python
|
109 |
+
# pip install accelerate
|
110 |
+
import torch
|
111 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
112 |
|
113 |
+
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
|
114 |
+
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto", torch_dtype=torch.float16)
|
115 |
|
116 |
+
input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
|
117 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
118 |
|
119 |
+
outputs = model.generate(input_ids)
|
120 |
+
print(tokenizer.decode(outputs[0]))
|
121 |
+
```
|
122 |
|
123 |
+
</details>
|
124 |
|
125 |
+
#### INT8
|
126 |
|
127 |
+
<details>
|
128 |
+
<summary> Click to expand </summary>
|
129 |
|
130 |
+
```python
|
131 |
+
# pip install bitsandbytes accelerate
|
132 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
133 |
+
|
134 |
+
tokenizer = T5Tokenizer.from_pretrained("thaboe01/t5-spelling-corrector")
|
135 |
+
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-corrector", device_map="auto", load_in_8bit=True)
|
136 |
|
137 |
+
input_text = "Please correct the following sentence: ndaids kurnda kumba kwaco"
|
138 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
139 |
|
140 |
+
outputs = model.generate(input_ids)
|
141 |
+
print(tokenizer.decode(outputs[0]))
|
142 |
+
```
|
143 |
|
144 |
+
</details>
|
145 |
|
|
|
146 |
|
147 |
+
## Evaluation
|
148 |
|
149 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
150 |
|
151 |
+
### Testing Metrics
|
152 |
|
153 |
+
#### Metrics
|
154 |
|
155 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
156 |
+
<img src=""
|
157 |
+
alt="metrics" width="600"/>
|
158 |
|
159 |
## Environmental Impact
|
160 |
|
|
|
162 |
|
163 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
164 |
|
165 |
+
- **Hardware Type:** [T4 GPU x 2]
|
166 |
+
- **Hours used:** [8]
|
167 |
+
- **Cloud Provider:** [Kaggle]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
## Model Card Authors [optional]
|
170 |
|
171 |
+
Thabolezwe Mabandla
|
172 |
|
173 |
## Model Card Contact
|
174 |
|
175 |