add lm
Browse files- language model/attrs.json +1 -0
- language model/unigrams.txt +0 -0
- language model/vi_lm_5grams.bin +3 -0
- model_handling.py +163 -0
language model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language model/unigrams.txt
ADDED
File without changes
|
language model/vi_lm_5grams.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2e3e3264950427d249876ac3dd24c0f506b06f1cca3e2c4095e0f95e50b3133
|
3 |
+
size 2471072676
|
model_handling.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2PreTrainedModel, Wav2Vec2Model
|
2 |
+
from torch import nn
|
3 |
+
import warnings
|
4 |
+
import torch
|
5 |
+
from transformers.modeling_outputs import CausalLMOutput
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
_HIDDEN_STATES_START_POSITION = 2
|
9 |
+
|
10 |
+
|
11 |
+
class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
|
15 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
16 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
17 |
+
|
18 |
+
self.feature_transform = nn.Sequential(OrderedDict([
|
19 |
+
('linear1', nn.Linear(config.hidden_size, config.hidden_size)),
|
20 |
+
('bn1', nn.BatchNorm1d(config.hidden_size)),
|
21 |
+
('activation1', nn.LeakyReLU()),
|
22 |
+
('drop1', nn.Dropout(config.final_dropout)),
|
23 |
+
('linear2', nn.Linear(config.hidden_size, config.hidden_size)),
|
24 |
+
('bn2', nn.BatchNorm1d(config.hidden_size)),
|
25 |
+
('activation2', nn.LeakyReLU()),
|
26 |
+
('drop2', nn.Dropout(config.final_dropout)),
|
27 |
+
('linear3', nn.Linear(config.hidden_size, config.hidden_size)),
|
28 |
+
('bn3', nn.BatchNorm1d(config.hidden_size)),
|
29 |
+
('activation3', nn.LeakyReLU()),
|
30 |
+
('drop3', nn.Dropout(config.final_dropout))
|
31 |
+
]))
|
32 |
+
|
33 |
+
if config.vocab_size is None:
|
34 |
+
raise ValueError(
|
35 |
+
f"You are trying to instantiate {self.__class__} with a configuration that "
|
36 |
+
"does not define the vocabulary size of the language model head. Please "
|
37 |
+
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
38 |
+
"or define `vocab_size` of your model's configuration."
|
39 |
+
)
|
40 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
41 |
+
|
42 |
+
self.is_wav2vec_freeze = False
|
43 |
+
|
44 |
+
# Initialize weights and apply final processing
|
45 |
+
self.post_init()
|
46 |
+
|
47 |
+
def freeze_feature_extractor(self):
|
48 |
+
"""
|
49 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
50 |
+
not be updated during training.
|
51 |
+
"""
|
52 |
+
warnings.warn(
|
53 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5."
|
54 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
55 |
+
FutureWarning,
|
56 |
+
)
|
57 |
+
self.freeze_feature_encoder()
|
58 |
+
|
59 |
+
def freeze_feature_encoder(self):
|
60 |
+
"""
|
61 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
62 |
+
not be updated during training.
|
63 |
+
"""
|
64 |
+
self.wav2vec2.feature_extractor._freeze_parameters()
|
65 |
+
|
66 |
+
def freeze_wav2vec(self, is_freeze=True):
|
67 |
+
"""
|
68 |
+
Calling this function will disable the gradient computation for the feature extractor so that its parameter
|
69 |
+
will not be updated during training.
|
70 |
+
"""
|
71 |
+
if is_freeze:
|
72 |
+
self.is_wav2vec_freeze = True
|
73 |
+
for param in self.wav2vec2.parameters():
|
74 |
+
param.requires_grad = False
|
75 |
+
else:
|
76 |
+
self.is_wav2vec_freeze = False
|
77 |
+
for param in self.wav2vec2.parameters():
|
78 |
+
param.requires_grad = True
|
79 |
+
self.freeze_feature_encoder()
|
80 |
+
|
81 |
+
model_total_params = sum(p.numel() for p in self.parameters())
|
82 |
+
model_total_params_trainable = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
83 |
+
print("model_total_params: {}\nmodel_total_params_trainable: {}".format(model_total_params,
|
84 |
+
model_total_params_trainable))
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
input_values,
|
89 |
+
attention_mask=None,
|
90 |
+
output_attentions=None,
|
91 |
+
output_hidden_states=None,
|
92 |
+
return_dict=None,
|
93 |
+
labels=None,
|
94 |
+
):
|
95 |
+
r"""
|
96 |
+
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
97 |
+
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
98 |
+
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
99 |
+
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
100 |
+
config.vocab_size - 1]`.
|
101 |
+
"""
|
102 |
+
|
103 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
104 |
+
|
105 |
+
outputs = self.wav2vec2(
|
106 |
+
input_values,
|
107 |
+
attention_mask=attention_mask,
|
108 |
+
output_attentions=output_attentions,
|
109 |
+
output_hidden_states=output_hidden_states,
|
110 |
+
return_dict=return_dict,
|
111 |
+
)
|
112 |
+
|
113 |
+
hidden_states = outputs[0]
|
114 |
+
hidden_states = self.dropout(hidden_states)
|
115 |
+
|
116 |
+
B, T, F = hidden_states.size()
|
117 |
+
hidden_states = hidden_states.view(B * T, F)
|
118 |
+
|
119 |
+
hidden_states = self.feature_transform(hidden_states)
|
120 |
+
|
121 |
+
hidden_states = hidden_states.view(B, T, F)
|
122 |
+
|
123 |
+
logits = self.lm_head(hidden_states)
|
124 |
+
|
125 |
+
loss = None
|
126 |
+
if labels is not None:
|
127 |
+
|
128 |
+
if labels.max() >= self.config.vocab_size:
|
129 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
130 |
+
|
131 |
+
# retrieve loss input_lengths from attention_mask
|
132 |
+
attention_mask = (
|
133 |
+
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
|
134 |
+
)
|
135 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
|
136 |
+
|
137 |
+
# assuming that padded tokens are filled with -100
|
138 |
+
# when not being attended to
|
139 |
+
labels_mask = labels >= 0
|
140 |
+
target_lengths = labels_mask.sum(-1)
|
141 |
+
flattened_targets = labels.masked_select(labels_mask)
|
142 |
+
|
143 |
+
# ctc_loss doesn't support fp16
|
144 |
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
145 |
+
|
146 |
+
with torch.backends.cudnn.flags(enabled=False):
|
147 |
+
loss = nn.functional.ctc_loss(
|
148 |
+
log_probs,
|
149 |
+
flattened_targets,
|
150 |
+
input_lengths,
|
151 |
+
target_lengths,
|
152 |
+
blank=self.config.pad_token_id,
|
153 |
+
reduction=self.config.ctc_loss_reduction,
|
154 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
155 |
+
)
|
156 |
+
|
157 |
+
if not return_dict:
|
158 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
159 |
+
return ((loss,) + output) if loss is not None else output
|
160 |
+
|
161 |
+
return CausalLMOutput(
|
162 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
163 |
+
)
|