# https://aimstack.io/ # example usage in lightning module: # https://github.com/aimhubio/aim/blob/main/examples/pytorch_lightning_track.py # open the Aim UI with the following command (run in the folder containing the `.aim` folder): # `aim up` aim: _target_: aim.pytorch_lightning.AimLogger repo: ${paths.root_dir} # .aim folder will be created here # repo: "aim://ip_address:port" # can instead provide IP address pointing to Aim remote tracking server which manages the repo, see https://aimstack.readthedocs.io/en/latest/using/remote_tracking.html# # aim allows to group runs under experiment name experiment: null # any string, set to "default" if not specified train_metric_prefix: "train/" val_metric_prefix: "val/" test_metric_prefix: "test/" # sets the tracking interval in seconds for system usage metrics (CPU, GPU, memory, etc.) system_tracking_interval: 10 # set to null to disable system metrics tracking # enable/disable logging of system params such as installed packages, git info, env vars, etc. log_system_params: true # enable/disable tracking console logs (default value is true) capture_terminal_logs: false # set to false to avoid infinite console log loop issue https://github.com/aimhubio/aim/issues/2550