rdemorais commited on
Commit
233e751
1 Parent(s): 927b35e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -18
README.md CHANGED
@@ -9,40 +9,35 @@ widget:
9
  example_title: "Exemplo 3"
10
  - text: "Mitos e verdades sobre o <mask>. Doença que mais mata mulheres no Brasil."
11
  example_title: "Exemplo 4"
12
- tags:
13
- - generated_from_trainer
14
  model-index:
15
  - name: tgf-xlm-roberta-base-pt-br
16
  results: []
17
  ---
18
 
19
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
- should probably proofread and complete it, then remove this comment. -->
21
-
22
  # tgf-xlm-roberta-base-pt-br
23
 
24
- This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
25
 
26
  ## Model description
27
 
28
- More information needed
 
 
29
 
30
- ## Intended uses & limitations
31
 
32
- More information needed
33
 
34
- ## Training and evaluation data
35
 
36
- More information needed
37
 
38
  ## Training procedure
39
 
40
  ### Training hyperparameters
41
 
42
  The following hyperparameters were used during training:
43
- - learning_rate: 0.0001
44
- - train_batch_size: 64
45
- - eval_batch_size: 32
46
  - seed: 42
47
  - gradient_accumulation_steps: 8
48
  - total_train_batch_size: 512
@@ -52,13 +47,14 @@ The following hyperparameters were used during training:
52
  - num_epochs: 2
53
  - mixed_precision_training: Native AMP
54
 
55
- ### Training results
56
-
57
-
58
-
59
  ### Framework versions
60
 
61
  - Transformers 4.23.1
62
  - Pytorch 1.11.0a0+b6df043
63
  - Datasets 2.6.1
64
  - Tokenizers 0.13.1
 
 
 
 
 
 
9
  example_title: "Exemplo 3"
10
  - text: "Mitos e verdades sobre o <mask>. Doença que mais mata mulheres no Brasil."
11
  example_title: "Exemplo 4"
 
 
12
  model-index:
13
  - name: tgf-xlm-roberta-base-pt-br
14
  results: []
15
  ---
16
 
 
 
 
17
  # tgf-xlm-roberta-base-pt-br
18
 
19
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [BrWac](https://huggingface.co/datasets/thegoodfellas/brwac_tiny) dataset.
20
 
21
  ## Model description
22
 
23
+ This is a fine-tuned version of the Brazilian Portuguese language. It was trained using the [BrWac](https://huggingface.co/datasets/thegoodfellas/brwac_tiny) dataset and followed the principles from [Roberta's paper](https://arxiv.org/abs/1907.11692). The key strategies are:
24
+
25
+ 1. *Full-Sentences*: Quoted from the paper: "Each input is packed with full sentences sampled contiguously from one or more documents, such that the total length is at most 512 tokens. Inputs may cross document boundaries. When we reach the end of one document, we begin sampling sentences from the next document and add an extra separator token between documents".
26
 
27
+ 2. Tunned hyperparameters: adam_beta1=0.9, adam_beta2=0.98, adam_epsilon=1e-6 (as paper suggests)
28
 
 
29
 
30
+ ## Availability
31
 
32
+ The source code is available [here](https://github.com/the-good-fellas/xlm-roberta-pt-br)
33
 
34
  ## Training procedure
35
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
+ - learning_rate: 1e-4
40
+ - train_batch_size: 16
 
41
  - seed: 42
42
  - gradient_accumulation_steps: 8
43
  - total_train_batch_size: 512
 
47
  - num_epochs: 2
48
  - mixed_precision_training: Native AMP
49
 
 
 
 
 
50
  ### Framework versions
51
 
52
  - Transformers 4.23.1
53
  - Pytorch 1.11.0a0+b6df043
54
  - Datasets 2.6.1
55
  - Tokenizers 0.13.1
56
+
57
+ ### Environment
58
+
59
+ Special thanks to [DataCrunch.io](https://datacrunch.io) with their amazing, and affordable GPUs.
60
+ <img src="https://datacrunch.io/_next/static/media/Logo.6b773500.svg" width="20%"/>