--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: hubert-model-v2 results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.82 - name: Precision type: precision value: 0.8391562316626255 - name: Recall type: recall value: 0.82 - name: F1 type: f1 value: 0.822405644289722 --- # hubert-model-v2 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.9612 - Accuracy: 0.82 - Precision: 0.8392 - Recall: 0.82 - F1: 0.8224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.2086 | 1.0 | 200 | 2.0834 | 0.265 | 0.1987 | 0.265 | 0.1723 | | 1.8657 | 2.0 | 400 | 1.7149 | 0.385 | 0.3228 | 0.385 | 0.3226 | | 1.5242 | 3.0 | 600 | 1.4365 | 0.49 | 0.4463 | 0.49 | 0.4280 | | 1.2542 | 4.0 | 800 | 1.2907 | 0.57 | 0.6029 | 0.57 | 0.5477 | | 1.0119 | 5.0 | 1000 | 1.0524 | 0.69 | 0.7249 | 0.69 | 0.6745 | | 0.8835 | 6.0 | 1200 | 1.1677 | 0.69 | 0.7156 | 0.69 | 0.6718 | | 0.7271 | 7.0 | 1400 | 0.9158 | 0.745 | 0.7569 | 0.745 | 0.7309 | | 0.5453 | 8.0 | 1600 | 0.7592 | 0.82 | 0.8296 | 0.82 | 0.8185 | | 0.4503 | 9.0 | 1800 | 0.9936 | 0.775 | 0.8138 | 0.775 | 0.7799 | | 0.3625 | 10.0 | 2000 | 0.9192 | 0.815 | 0.8258 | 0.815 | 0.8146 | | 0.2773 | 11.0 | 2200 | 0.9768 | 0.82 | 0.8362 | 0.82 | 0.8201 | | 0.2309 | 12.0 | 2400 | 0.9612 | 0.82 | 0.8392 | 0.82 | 0.8224 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0