--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - trl - sft - generated_from_trainer model-index: - name: TinyLlama-v2ray results: [] datasets: - TheBossLevel123/v2ray library_name: transformers widget: - text: "<|im_start|>user\nWho are you?<|im_end|>\n<|im_start|>assistant" example_title: "First Example" - text: "<|im_start|>user\nhow much do you goon?<|im_end|>\n<|im_start|>assistant" example_title: "Second Example" --- # TinyLlama-v2ray This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the [TheBossLevel123/v2ray](https://huggingface.co/datasets/TheBossLevel123/v2ray) dataset. ## Model description Prompt format is as follows: ```py <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` The model is intended to mimic the behavior of v2ray, so results will most likely be nonsensical or gibberish. ## Example Usage ```py import torch from transformers import pipeline, AutoTokenizer import re tokenizer = AutoTokenizer.from_pretrained("TheBossLevel123/TinyLlama-v2ray") pipe = pipeline("text-generation", model="TheBossLevel123/TinyLlama-v2ray", torch_dtype=torch.bfloat16, device_map="auto") def formatted_prompt(prompt)-> str: return f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" def extract_text(text): pattern = r'v2ray\n(.*?)(?=<\|im_end\|>)' match = re.search(pattern, text, re.DOTALL) if match: return f"Output: {match.group(1)}" else: return "No match found" prompt = 'what are your thoughts on ccp' outputs = pipe(formatted_prompt(prompt), max_new_tokens=50, do_sample=True, temperature=0.9) if outputs and "generated_text" in outputs[0]: text = extract_text(outputs[0]["generated_text"]) print(f"Prompt: {prompt}") print("") print(text) else: print("No output or unexpected structure") #Prompt: what are ur thoughts on ccp # #Output: you are a ccp ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0