vubh2015 commited on
Commit
46e1bd7
·
1 Parent(s): 8e003e3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -8,16 +8,17 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 269.55 +/- 17.65
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **LunarLander-v2**
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.48 +/- 17.70
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fe1ddd050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fe1ddd0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fe1ddd170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fe1ddd200>", "_build": "<function ActorCriticPolicy._build at 0x7f9fe1ddd290>", "forward": "<function ActorCriticPolicy.forward at 0x7f9fe1ddd320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fe1ddd3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9fe1ddd440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fe1ddd4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fe1ddd560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fe1ddd5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9fe1da5840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655268509.2453737, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAZp67PJwSMT/CWuY8annvvvTNGj2H6Zk7AAAAAAAAAABNPLK9f4WTP6aCgb4yehm/d6MpvsKonL0AAAAAAAAAAHNfiD1OVKA+KsNUvAHAo75LPBQ9kujUvQAAAAAAAAAAoEtKvs/MEj+OSts92ZOtvrN9Jb7yZPg9AAAAAAAAAAAArBs9YMmuP7KSAz90Z7y+LJWwu1qH1T0AAAAAAAAAAABOqDx79Jc5ohuiuTO6wbMRNwu8SCfJOAAAgD8AAIA/Zlf7vMNJYbrarxo4oAAVM/0AFLrk+DW3AACAPwAAgD/AXJ89+O3hPrBmWL2Vhby+d10qPZP3pjwAAAAAAAAAAJrOV77icJs+PdBtPorUW77Uvdy7YgQDvAAAAAAAAAAAJd6KvnJDQz/3coG+etENv9Mwy74gmzQ9AAAAAAAAAACAYS09ElmPPBXbzL0ejD2+l1gMvT6p6LsAAAAAAAAAACB1Sr6OyYi8c4glu+TDWbn68fk9m/NUOgAAgD8AAAAAQEMgvmRa3T5pcLE+3OqwvgV+ZLw+NCk+AAAAAAAAAAAamgS9JEFnPl7wj7y/kT6+smaRujHnIb0AAAAAAAAAAKZARL74X5s8BUjhPDscazxeCSy+85d1vQAAgD8AAIA/gETbPbvgMj9ANo47KYXuvrylrD3WEEa9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjPZ4Id1YcECUhpRSlIwBbJRL64wBdJRHQJPluJ+DvmZ1fZQoaAZoCWgPQwhiFASPL95xQJSGlFKUaBVLzWgWR0CT5jh60IC2dX2UKGgGaAloD0MIkzgrouZgcECUhpRSlGgVS+toFkdAk+Zn8GcFyXV9lChoBmgJaA9DCGqGVFE8nnBAlIaUUpRoFUvdaBZHQJPmeS0Sh8J1fZQoaAZoCWgPQwhXIeUnVUNuQJSGlFKUaBVL1mgWR0CT5remNzbOdX2UKGgGaAloD0MIV0EMdK3hckCUhpRSlGgVS/ZoFkdAk+bD/lyR0XV9lChoBmgJaA9DCCAMPPfeMXJAlIaUUpRoFUvZaBZHQJPnesLfDUF1fZQoaAZoCWgPQwjY8V8giEFwQJSGlFKUaBVL5GgWR0CT58B42S+ydX2UKGgGaAloD0MIDqK1oo36c0CUhpRSlGgVTQUBaBZHQJPoGNS619h1fZQoaAZoCWgPQwhh+8kYn69xQJSGlFKUaBVL12gWR0CT6WOmzjWDdX2UKGgGaAloD0MIs5YC0j4/cECUhpRSlGgVS9toFkdAk+mMmF8G93V9lChoBmgJaA9DCFH51/JKynBAlIaUUpRoFUvZaBZHQJPpsjgQ6IZ1fZQoaAZoCWgPQwgYsrrV8wtzQJSGlFKUaBVNAgFoFkdAk+oYSpR4yHV9lChoBmgJaA9DCDj5LTpZXnFAlIaUUpRoFU0IAWgWR0CT6pN2C/XYdX2UKGgGaAloD0MIEVMiiR7dcUCUhpRSlGgVS/loFkdAk+rh5X2du3V9lChoBmgJaA9DCE8g7BQrV21AlIaUUpRoFUv5aBZHQJPrqIJqqOt1fZQoaAZoCWgPQwh+rOC3YbVxQJSGlFKUaBVL1mgWR0CT66hcJMQFdX2UKGgGaAloD0MIdZFCWXjbbkCUhpRSlGgVS81oFkdAk+u2ipNsWXV9lChoBmgJaA9DCOSG30338nJAlIaUUpRoFUv9aBZHQJPr25Etuk11fZQoaAZoCWgPQwhUqdkDbTRxQJSGlFKUaBVL4mgWR0CT6+Ja7mMgdX2UKGgGaAloD0MIJsYy/ZKmcUCUhpRSlGgVS9NoFkdAk+vrY02tMnV9lChoBmgJaA9DCJ6VtOKbFXFAlIaUUpRoFUvZaBZHQJPstRiw0O51fZQoaAZoCWgPQwhqF9NMt9ZwQJSGlFKUaBVL1mgWR0CT7On+AEt/dX2UKGgGaAloD0MIehowSDrtckCUhpRSlGgVTR0BaBZHQJPs+yxA0Kt1fZQoaAZoCWgPQwjkS6jg8PluQJSGlFKUaBVL0mgWR0CT7SYhMajvdX2UKGgGaAloD0MIV5QSglUEcECUhpRSlGgVS8poFkdAk+55TQ3PzHV9lChoBmgJaA9DCKpE2VuKPnFAlIaUUpRoFUvkaBZHQJPu0MH8jzJ1fZQoaAZoCWgPQwg3VIzz929yQJSGlFKUaBVL5mgWR0CT7wL6DXe4dX2UKGgGaAloD0MIJSAm4UKZcECUhpRSlGgVS+xoFkdAk/AgUYbbUXV9lChoBmgJaA9DCMIyNnSzs3BAlIaUUpRoFUvMaBZHQJQVZ6jWTX91fZQoaAZoCWgPQwgmb4CZL1lxQJSGlFKUaBVLxmgWR0CUFYUBnzxxdX2UKGgGaAloD0MI83LYfcc5cUCUhpRSlGgVS+9oFkdAlBWLsrupj3V9lChoBmgJaA9DCHcujPTiJXNAlIaUUpRoFU0WAWgWR0CUFchw2l2vdX2UKGgGaAloD0MIwyreyHzocECUhpRSlGgVS9ZoFkdAlBXbQLNOd3V9lChoBmgJaA9DCIRIhhxbRm5AlIaUUpRoFUvZaBZHQJQV8hePaL51fZQoaAZoCWgPQwgtexLY3G1zQJSGlFKUaBVL42gWR0CUFfpB5X2edX2UKGgGaAloD0MIEoWWdT9hcUCUhpRSlGgVS+xoFkdAlBYyiyprDnV9lChoBmgJaA9DCA8Ni1FXYHFAlIaUUpRoFUvYaBZHQJQWv4XXRPZ1fZQoaAZoCWgPQwjJWdjTDnNwQJSGlFKUaBVL4GgWR0CUFx4RmK64dX2UKGgGaAloD0MIbcZpiOowcECUhpRSlGgVS+poFkdAlBdobKifx3V9lChoBmgJaA9DCEM8Ei9Pj3FAlIaUUpRoFUvlaBZHQJQXesKb8WN1fZQoaAZoCWgPQwiy9QzhWKdxQJSGlFKUaBVL1GgWR0CUGLBMBZIQdX2UKGgGaAloD0MIm/9XHbmmcECUhpRSlGgVS+loFkdAlBjdmxt52XV9lChoBmgJaA9DCPnzbcHS9HJAlIaUUpRoFUvsaBZHQJQZd4RmK651fZQoaAZoCWgPQwiJXHAGP8FyQJSGlFKUaBVL12gWR0CUGhY5DJEIdX2UKGgGaAloD0MInFHzVfIQckCUhpRSlGgVS85oFkdAlBp8nmaH9HV9lChoBmgJaA9DCOY/pN++4W9AlIaUUpRoFUvdaBZHQJQafb9If8x1fZQoaAZoCWgPQwhMbamDfEBzQJSGlFKUaBVL5WgWR0CUGt2PDHfedX2UKGgGaAloD0MIh6jCn2FicECUhpRSlGgVS9NoFkdAlBreMZP2wnV9lChoBmgJaA9DCD4kfO9vRW1AlIaUUpRoFUveaBZHQJQbGxVyWAx1fZQoaAZoCWgPQwj2fM1yGbpyQJSGlFKUaBVL6mgWR0CUG0vDxb0OdX2UKGgGaAloD0MI8MLWbKWPcUCUhpRSlGgVS/5oFkdAlBtz4593KXV9lChoBmgJaA9DCA/yejAp425AlIaUUpRoFUvUaBZHQJQbvdCVryl1fZQoaAZoCWgPQwgGnnsP1wJwQJSGlFKUaBVL8GgWR0CUG8oiLVFydX2UKGgGaAloD0MIiZtTyQCXcECUhpRSlGgVS+FoFkdAlBxZRjz7M3V9lChoBmgJaA9DCLMKmwFum3BAlIaUUpRoFUvcaBZHQJQchfOUt7N1fZQoaAZoCWgPQwinBwWl6F9yQJSGlFKUaBVL4mgWR0CUHLdzGPxQdX2UKGgGaAloD0MI0A1N2SmQcUCUhpRSlGgVS+FoFkdAlB4X2dupCXV9lChoBmgJaA9DCO8eoPvy93FAlIaUUpRoFUvsaBZHQJQeMCtA9mp1fZQoaAZoCWgPQwisyOiAZHpzQJSGlFKUaBVL+WgWR0CUH1863iJgdX2UKGgGaAloD0MIh4px/mYlckCUhpRSlGgVS9hoFkdAlCAseOn2qXV9lChoBmgJaA9DCFwf1hu1bG9AlIaUUpRoFUvuaBZHQJQgjMeOn2t1fZQoaAZoCWgPQwjjNEQVvo1xQJSGlFKUaBVNEQFoFkdAlCDA+MZP23V9lChoBmgJaA9DCM6JPbSP73JAlIaUUpRoFU0IAWgWR0CUIOr7wazedX2UKGgGaAloD0MIrWnecUpQckCUhpRSlGgVS/1oFkdAlCD6FRHf/HV9lChoBmgJaA9DCPTfg9euHnBAlIaUUpRoFUvraBZHQJQhIn1Fpfx1fZQoaAZoCWgPQwjuYMQ+wftyQJSGlFKUaBVNFQFoFkdAlCFASFoL5XV9lChoBmgJaA9DCCV1ApoIVlNAlIaUUpRoFUu6aBZHQJQhafRNRFZ1fZQoaAZoCWgPQwjD81Kx8Y1zQJSGlFKUaBVL6mgWR0CUIW3sHB1tdX2UKGgGaAloD0MI/IwLB0KlckCUhpRSlGgVTQMBaBZHQJQiBEtuk1x1fZQoaAZoCWgPQwjrNT0o6CZwQJSGlFKUaBVL52gWR0CUIjJC0F8pdX2UKGgGaAloD0MIO6qaIOqOckCUhpRSlGgVTQgBaBZHQJQixMvh60J1fZQoaAZoCWgPQwjAsz16w6JwQJSGlFKUaBVL2GgWR0CUI4ytV7x/dX2UKGgGaAloD0MIyzDuBtHxb0CUhpRSlGgVS+poFkdAlCQZHiFTN3V9lChoBmgJaA9DCJwYkpMJ2HJAlIaUUpRoFUvbaBZHQJQk33qRlpZ1fZQoaAZoCWgPQwgr9pfdU2NxQJSGlFKUaBVL0GgWR0CUJV9Ujs2OdX2UKGgGaAloD0MI4C77dec6cUCUhpRSlGgVS9VoFkdAlCXaNAC4jXV9lChoBmgJaA9DCBR7aB+rtXNAlIaUUpRoFUvYaBZHQJQmR2TxG2F1fZQoaAZoCWgPQwglJNI2fktxQJSGlFKUaBVL9GgWR0CUJvEnLJS0dX2UKGgGaAloD0MIq8spAbFHckCUhpRSlGgVS+poFkdAlCcSVGCqZXV9lChoBmgJaA9DCN9RY0KMX3FAlIaUUpRoFUvnaBZHQJQnH8iwB5p1fZQoaAZoCWgPQwi5qBYRhStxQJSGlFKUaBVNAAFoFkdAlCeBPfsNUnV9lChoBmgJaA9DCNIb7iM3OG1AlIaUUpRoFUvvaBZHQJQniWJJoTR1fZQoaAZoCWgPQwifkJ23cTVwQJSGlFKUaBVL72gWR0CUJ5IAfdRBdX2UKGgGaAloD0MIajS5GMOxcUCUhpRSlGgVS+1oFkdAlCgmZeAuqXV9lChoBmgJaA9DCPIolfCEJ3NAlIaUUpRoFUvzaBZHQJQoe7Xg9/11fZQoaAZoCWgPQwj9hR4xuvJyQJSGlFKUaBVL42gWR0CUKLJ7sv7FdX2UKGgGaAloD0MIzA2GOuwlc0CUhpRSlGgVS9xoFkdAlClGUfPom3V9lChoBmgJaA9DCDgxJCcTy3NAlIaUUpRoFUvuaBZHQJQqUMEzO5d1fZQoaAZoCWgPQwh0z7pGy15uQJSGlFKUaBVL0GgWR0CUKs9lVcUudX2UKGgGaAloD0MI5Euo4PCickCUhpRSlGgVS/9oFkdAlCurDhtLtnV9lChoBmgJaA9DCLSqJR1lHnJAlIaUUpRoFUvpaBZHQJQsC68QI2R1fZQoaAZoCWgPQwjAIVSpGbpxQJSGlFKUaBVL3GgWR0CULCEGZ/kOdX2UKGgGaAloD0MIj1AzpIp/cUCUhpRSlGgVS9NoFkdAlCx7HQyAQXV9lChoBmgJaA9DCD874Lqiq3BAlIaUUpRoFUvJaBZHQJQsvfgrH2h1fZQoaAZoCWgPQwhMjGX6pXhvQJSGlFKUaBVL4mgWR0CULPtkWhysdX2UKGgGaAloD0MIRrWIKKYAcUCUhpRSlGgVS+toFkdAlC1At4A0bnV9lChoBmgJaA9DCNnqckrAQHJAlIaUUpRoFUvhaBZHQJQtZfCyhSN1fZQoaAZoCWgPQwi/gjRjUd9yQJSGlFKUaBVL9WgWR0CULdrHU+cIdX2UKGgGaAloD0MIM2spIC2Jc0CUhpRSlGgVS/RoFkdAlC5zBInSfHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.985, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f062cb69870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f062cb69900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f062cb69990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f062cb69a20>", "_build": "<function ActorCriticPolicy._build at 0x7f062cb69ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7f062cb69b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f062cb69bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f062cb69c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f062cb69cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f062cb69d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f062cb69e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f062cb69ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f062cb6d300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686970095412437868, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOejz2klZ09aiyfva41Eb7lX2a7DihCPQAAAAAAAAAAGqgHPaJa6D5OyCm9hWB5vlvzdDzWkdS7AAAAAAAAAADNHq88e1rJPsv4iT0x3ZC+bdZ1Pae0Ej0AAAAAAAAAAGYMmj2ONJM/0v18Pqf//r7Px5k9qsqCPQAAAAAAAAAA6uaOPrLv1j5mn22+vcSZvqwGjjxq7eS9AAAAAAAAAAAmvjm+ZYuIP0KjkL1KauG+i906vnLnlT0AAAAAAAAAAH2sjz7mqVM/dVqhPRz6wr4aHz0+/lz4PAAAAAAAAAAA5jwGvQqreTqZyxy929dZvi38JbzSMSY9AAAAAAAAAADalMm9JckKP1LrkD1CLca+ADlQvVYGp7wAAAAAAAAAAKbKuT0RFoI9pXW/vR2yK77RpCg9ovBgvQAAAAAAAAAAhvMMPu8pVT1FvfS9UE8pvvyGkLzOJU49AAAAAAAAAABm49a8hcGnuxEFNj1CPqO9FqTUPPg8qD4AAIA/AACAP80eKj2WS2g9g+fxPU+tRL7xy+49oypUPQAAAAAAAAAAgHmzPWrLcT8LQe09gPXMvvka7D3jxJm5AAAAAAAAAABmBs079qRhujqpIbMLc/Eu7OkKOdYgwDMAAIA/AACAPxrwYj09zy8+O23uPU7/hb4s7hM+KI6jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGpAk5ZKWeMAWyUTTUBjAF0lEdAkXaPgJkXlHV9lChoBkdAcsf8Md92HWgHTTQBaAhHQJF4JvNu+AV1fZQoaAZHQHHyyxZ+x4ZoB01yAWgIR0CReRLhrFfidX2UKGgGR0Bu+ZxLkCFLaAdNNQFoCEdAkXkwMhHLBHV9lChoBkdAbl6wrUb1iGgHTSUBaAhHQJF5W+dsi0R1fZQoaAZHQHLKOLehwl1oB0vmaAhHQJF6GBXjlxR1fZQoaAZHQHJLYm1IAfdoB008AWgIR0CRelJdjXnRdX2UKGgGR0Buq2DSPU8WaAdNJwFoCEdAkXtfYraufXV9lChoBkdAbTAz7/GVA2gHTS8BaAhHQJF7n4etCAt1fZQoaAZHQFKMAJb+tKZoB0u5aAhHQJF8SdZq20B1fZQoaAZHQG5JkVvddmhoB01DAWgIR0CRfdaTOgQIdX2UKGgGR0BtJJNfw7T2aAdNEgFoCEdAkX6nmaH9FXV9lChoBkdAcGANpdrwfGgHTSUBaAhHQJGAEA5q/M51fZQoaAZHQHIVlCkXUH9oB00dAWgIR0CRgQtUXHindX2UKGgGR0BywEr3Cbc5aAdNTwFoCEdAkYFQOrhisnV9lChoBkdAcMZAgxJumGgHTREBaAhHQJGB0txuKoB1fZQoaAZHQHIna4lQdjpoB0vkaAhHQJGEHyI55qx1fZQoaAZHQHDgiaRZED1oB016AWgIR0CRhB5zYEntdX2UKGgGR0BsnQESuhboaAdNLgFoCEdAkYVc4tHx0HV9lChoBkdActLwWFev6mgHTRkBaAhHQJGFkvPC2tx1fZQoaAZHQHCu66J66atoB00wAWgIR0CRhlx3V09ydX2UKGgGR0BxyT5ZbILgaAdNGQFoCEdAkYZyDRMN+nV9lChoBkdAcxHDgIhQnGgHTSkBaAhHQJGI651/2Cd1fZQoaAZHQG3nvNFBppNoB01yAWgIR0CRiWbCrLhadX2UKGgGR0Bza3ewcHW0aAdNAAFoCEdAkYmRrnDBM3V9lChoBkdAcaHhNM495mgHTTsBaAhHQJGKd9Cu2Z11fZQoaAZHQHHDGvKU3XJoB00HAWgIR0CRi54JNTLodX2UKGgGR0Btxm+0w8GLaAdNLQFoCEdAkYvKSkj5bnV9lChoBkdAcIEHCoCMgmgHS/hoCEdAkYvXdoFmnXV9lChoBkdAcT/kSmIj4mgHTQMBaAhHQJGMQuuieup1fZQoaAZHQHGxCSNfgJloB0v4aAhHQJGNnBVMmF91fZQoaAZHQGxte/pMYdhoB00IAWgIR0CRjhfxMFlkdX2UKGgGR0BwblVwPy08aAdNAAFoCEdAkY6dzCDVY3V9lChoBkdAch2uZkTYd2gHTUgBaAhHQJGOlBnjABV1fZQoaAZHQHEpmNvOyFBoB0v1aAhHQJGO5hd+ocd1fZQoaAZHQG9ayHM2WIJoB00iAWgIR0CRkD6/IsAedX2UKGgGR0Bxh8pjMFEBaAdNOgFoCEdAkZBrf+CK8HV9lChoBkdAbzZ5KvmozmgHTRQBaAhHQJGRirwOOKh1fZQoaAZHQGyQEl3Qla9oB00TAWgIR0CRke6ij+JhdX2UKGgGR0BwshSUC7sfaAdNJAFoCEdAkZJTbnHNo3V9lChoBkdAbpbcgyM1j2gHTT4BaAhHQJGT7uG9Htp1fZQoaAZHQG4Ih68g6ltoB00aAWgIR0CRpVNbkfcOdX2UKGgGR0Bv32e4Cp3paAdNLwFoCEdAkaV9H+ZPVXV9lChoBkdAcl8Axi5NGmgHTUsBaAhHQJGmU3xWkrR1fZQoaAZHQHC+KmXPZ7JoB00DAWgIR0CRpqaTwDvFdX2UKGgGR0BwDQAOrhitaAdNJAFoCEdAkacxsuWa+nV9lChoBkdAcSV+Y+jdpWgHTYMBaAhHQJGn9t65Xlt1fZQoaAZHQHKBJZGKAJ9oB00qAWgIR0CRqL003wTedX2UKGgGR0Bw0y3nZCfIaAdNPQFoCEdAkakQ88s+V3V9lChoBkdAcdCPPszEaWgHTQEBaAhHQJGpHk2gnMN1fZQoaAZHQHFfGelKsdVoB00NAWgIR0CRqVPDpC8fdX2UKGgGR0BvYKoMrmQsaAdL/GgIR0CRqnUaQ3gldX2UKGgGR0BxOh8kUsWgaAdNdwFoCEdAkarSE+Pik3V9lChoBkdAcRhmw7kn1GgHTS4BaAhHQJGrsD5j6N51fZQoaAZHQHFf14keIVNoB00KAWgIR0CRrOiLl3hXdX2UKGgGR0Bt5iTKT0QLaAdNUAFoCEdAka2Sgf2bonV9lChoBkdAcQydDYywfWgHTSABaAhHQJGuiA8Swnp1fZQoaAZHQHBQpDzAeq9oB00GAWgIR0CRrrQUYbbUdX2UKGgGR0BhVTxEv0yyaAdN6ANoCEdAka+FL8Jla3V9lChoBkdAb3zs1KoQ4GgHTRQBaAhHQJGv+20AtFt1fZQoaAZHQB1DtPYWcjJoB0vSaAhHQJGwBYyO7xx1fZQoaAZHQHGBbPIGQjloB01NAWgIR0CRsCE7nxJ/dX2UKGgGR0ByPMSi/O+qaAdNMgFoCEdAkbBdapxWDHV9lChoBkdAchyDx9XtB2gHTQsBaAhHQJGwY7tAs051fZQoaAZHQHDyTg/C66JoB00UAWgIR0CRsUhysCDFdX2UKGgGR0BzStg2Ifr9aAdNDgFoCEdAkbFcM3IdVHV9lChoBkdAb+4yad+Xq2gHTRUBaAhHQJGy0u6ErXl1fZQoaAZHQHHrNW6shgVoB01IAWgIR0CRsxVLzwtrdX2UKGgGR0ByMa5paiblaAdNKgFoCEdAkbP9Bv73wnV9lChoBkdAcnmfHxSYPWgHTQABaAhHQJG084BFNL11fZQoaAZHQHFhWz0HyEtoB00qAWgIR0CRtQTNdJJ5dX2UKGgGR0BtYWjGkvboaAdL92gIR0CRtWVKf4ATdX2UKGgGR0ByPukEcKgJaAdL32gIR0CRtb57gKnfdX2UKGgGR0ByhHBBRhttaAdL7GgIR0CRtgT7EYO2dX2UKGgGR0Bw8dP557gLaAdL92gIR0CRt7dHDrJKdX2UKGgGR0BypjaTOgQIaAdNAwFoCEdAkbjV1nuiOHV9lChoBkdAcTKeLNwBHWgHTQEBaAhHQJG5b3Cbc451fZQoaAZHQG7Cp+c6Nl1oB00pAWgIR0CRux63y7PIdX2UKGgGR0BzJlwrDqGDaAdL0WgIR0CRu1n2ZiNLdX2UKGgGR0BsQmsT37DVaAdNOQFoCEdAkbtzgQ6IWXV9lChoBkdAb4WSZBsyi2gHTQwBaAhHQJG7c9kjHGV1fZQoaAZHQHJwGetjkMloB01cAWgIR0CRvMZaFEiMdX2UKGgGR0Bx64OH31zyaAdNSAFoCEdAkb4r9AHE/HV9lChoBkdAcLDlRxcVxmgHS/xoCEdAkb6V4LThHnV9lChoBkdAckD1PWQOnWgHTRsBaAhHQJG+2pkwvg51fZQoaAZHQG4CwUHpr1xoB00iAWgIR0CRwgwPAfuDdX2UKGgGR0BurdFBppN9aAdNLwFoCEdAkcI7fcer/HV9lChoBkdAb6KofjjrA2gHTTgBaAhHQJHCmB6KLsN1fZQoaAZHQHIesEq2BrhoB00hAWgIR0CRwtSowVTKdX2UKGgGR0BwH2Z7XxvvaAdNKgFoCEdAkcLjWkJrtXV9lChoBkdAccbWn0kGA2gHTQ0BaAhHQJHDtntfG+91fZQoaAZHQG62lTvRZ2ZoB00HAWgIR0CRxSoOQQtjdX2UKGgGR0By2cDp1RtQaAdL7mgIR0CRxaNiH6/JdX2UKGgGR0BwXBTWGyooaAdL72gIR0CRxdBInSfEdX2UKGgGR0Bw7Ic3l0YCaAdL/mgIR0CRxklFMIu5dX2UKGgGR0Bx+0AXEZR9aAdNQQFoCEdAkcaCJKraNHV9lChoBkdAbHqaMrEtNGgHTQQBaAhHQJHHRlGwzLx1fZQoaAZHQHKVgZflZHNoB00nAWgIR0CRx14z7/GVdX2UKGgGR0By2/6YVqN7aAdL6mgIR0CRx8s/pt78dX2UKGgGR0BslfXkHUtqaAdNEgFoCEdAkch+enQ6ZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b77a6e9aaf2ef3acf06136175ec117981f698cb63d82a2129d538b827fa7bdf3
3
- size 144106
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7879cb271fe4772e500fe1ad395ddc25eaf306c9d36999f90fb3afd074484cd6
3
+ size 146735
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -1,94 +1,99 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fe1ddd050>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fe1ddd0e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fe1ddd170>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fe1ddd200>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9fe1ddd290>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9fe1ddd320>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fe1ddd3b0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9fe1ddd440>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fe1ddd4d0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fe1ddd560>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fe1ddd5f0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f9fe1da5840>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
  "num_timesteps": 1015808,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1655268509.2453737,
51
- "learning_rate": 0.0005,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAZp67PJwSMT/CWuY8annvvvTNGj2H6Zk7AAAAAAAAAABNPLK9f4WTP6aCgb4yehm/d6MpvsKonL0AAAAAAAAAAHNfiD1OVKA+KsNUvAHAo75LPBQ9kujUvQAAAAAAAAAAoEtKvs/MEj+OSts92ZOtvrN9Jb7yZPg9AAAAAAAAAAAArBs9YMmuP7KSAz90Z7y+LJWwu1qH1T0AAAAAAAAAAABOqDx79Jc5ohuiuTO6wbMRNwu8SCfJOAAAgD8AAIA/Zlf7vMNJYbrarxo4oAAVM/0AFLrk+DW3AACAPwAAgD/AXJ89+O3hPrBmWL2Vhby+d10qPZP3pjwAAAAAAAAAAJrOV77icJs+PdBtPorUW77Uvdy7YgQDvAAAAAAAAAAAJd6KvnJDQz/3coG+etENv9Mwy74gmzQ9AAAAAAAAAACAYS09ElmPPBXbzL0ejD2+l1gMvT6p6LsAAAAAAAAAACB1Sr6OyYi8c4glu+TDWbn68fk9m/NUOgAAgD8AAAAAQEMgvmRa3T5pcLE+3OqwvgV+ZLw+NCk+AAAAAAAAAAAamgS9JEFnPl7wj7y/kT6+smaRujHnIb0AAAAAAAAAAKZARL74X5s8BUjhPDscazxeCSy+85d1vQAAgD8AAIA/gETbPbvgMj9ANo47KYXuvrylrD3WEEa9AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
  "_current_progress_remaining": -0.015808000000000044,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjPZ4Id1YcECUhpRSlIwBbJRL64wBdJRHQJPluJ+DvmZ1fZQoaAZoCWgPQwhiFASPL95xQJSGlFKUaBVLzWgWR0CT5jh60IC2dX2UKGgGaAloD0MIkzgrouZgcECUhpRSlGgVS+toFkdAk+Zn8GcFyXV9lChoBmgJaA9DCGqGVFE8nnBAlIaUUpRoFUvdaBZHQJPmeS0Sh8J1fZQoaAZoCWgPQwhXIeUnVUNuQJSGlFKUaBVL1mgWR0CT5remNzbOdX2UKGgGaAloD0MIV0EMdK3hckCUhpRSlGgVS/ZoFkdAk+bD/lyR0XV9lChoBmgJaA9DCCAMPPfeMXJAlIaUUpRoFUvZaBZHQJPnesLfDUF1fZQoaAZoCWgPQwjY8V8giEFwQJSGlFKUaBVL5GgWR0CT58B42S+ydX2UKGgGaAloD0MIDqK1oo36c0CUhpRSlGgVTQUBaBZHQJPoGNS619h1fZQoaAZoCWgPQwhh+8kYn69xQJSGlFKUaBVL12gWR0CT6WOmzjWDdX2UKGgGaAloD0MIs5YC0j4/cECUhpRSlGgVS9toFkdAk+mMmF8G93V9lChoBmgJaA9DCFH51/JKynBAlIaUUpRoFUvZaBZHQJPpsjgQ6IZ1fZQoaAZoCWgPQwgYsrrV8wtzQJSGlFKUaBVNAgFoFkdAk+oYSpR4yHV9lChoBmgJaA9DCDj5LTpZXnFAlIaUUpRoFU0IAWgWR0CT6pN2C/XYdX2UKGgGaAloD0MIEVMiiR7dcUCUhpRSlGgVS/loFkdAk+rh5X2du3V9lChoBmgJaA9DCE8g7BQrV21AlIaUUpRoFUv5aBZHQJPrqIJqqOt1fZQoaAZoCWgPQwh+rOC3YbVxQJSGlFKUaBVL1mgWR0CT66hcJMQFdX2UKGgGaAloD0MIdZFCWXjbbkCUhpRSlGgVS81oFkdAk+u2ipNsWXV9lChoBmgJaA9DCOSG30338nJAlIaUUpRoFUv9aBZHQJPr25Etuk11fZQoaAZoCWgPQwhUqdkDbTRxQJSGlFKUaBVL4mgWR0CT6+Ja7mMgdX2UKGgGaAloD0MIJsYy/ZKmcUCUhpRSlGgVS9NoFkdAk+vrY02tMnV9lChoBmgJaA9DCJ6VtOKbFXFAlIaUUpRoFUvZaBZHQJPstRiw0O51fZQoaAZoCWgPQwhqF9NMt9ZwQJSGlFKUaBVL1mgWR0CT7On+AEt/dX2UKGgGaAloD0MIehowSDrtckCUhpRSlGgVTR0BaBZHQJPs+yxA0Kt1fZQoaAZoCWgPQwjkS6jg8PluQJSGlFKUaBVL0mgWR0CT7SYhMajvdX2UKGgGaAloD0MIV5QSglUEcECUhpRSlGgVS8poFkdAk+55TQ3PzHV9lChoBmgJaA9DCKpE2VuKPnFAlIaUUpRoFUvkaBZHQJPu0MH8jzJ1fZQoaAZoCWgPQwg3VIzz929yQJSGlFKUaBVL5mgWR0CT7wL6DXe4dX2UKGgGaAloD0MIJSAm4UKZcECUhpRSlGgVS+xoFkdAk/AgUYbbUXV9lChoBmgJaA9DCMIyNnSzs3BAlIaUUpRoFUvMaBZHQJQVZ6jWTX91fZQoaAZoCWgPQwgmb4CZL1lxQJSGlFKUaBVLxmgWR0CUFYUBnzxxdX2UKGgGaAloD0MI83LYfcc5cUCUhpRSlGgVS+9oFkdAlBWLsrupj3V9lChoBmgJaA9DCHcujPTiJXNAlIaUUpRoFU0WAWgWR0CUFchw2l2vdX2UKGgGaAloD0MIwyreyHzocECUhpRSlGgVS9ZoFkdAlBXbQLNOd3V9lChoBmgJaA9DCIRIhhxbRm5AlIaUUpRoFUvZaBZHQJQV8hePaL51fZQoaAZoCWgPQwgtexLY3G1zQJSGlFKUaBVL42gWR0CUFfpB5X2edX2UKGgGaAloD0MIEoWWdT9hcUCUhpRSlGgVS+xoFkdAlBYyiyprDnV9lChoBmgJaA9DCA8Ni1FXYHFAlIaUUpRoFUvYaBZHQJQWv4XXRPZ1fZQoaAZoCWgPQwjJWdjTDnNwQJSGlFKUaBVL4GgWR0CUFx4RmK64dX2UKGgGaAloD0MIbcZpiOowcECUhpRSlGgVS+poFkdAlBdobKifx3V9lChoBmgJaA9DCEM8Ei9Pj3FAlIaUUpRoFUvlaBZHQJQXesKb8WN1fZQoaAZoCWgPQwiy9QzhWKdxQJSGlFKUaBVL1GgWR0CUGLBMBZIQdX2UKGgGaAloD0MIm/9XHbmmcECUhpRSlGgVS+loFkdAlBjdmxt52XV9lChoBmgJaA9DCPnzbcHS9HJAlIaUUpRoFUvsaBZHQJQZd4RmK651fZQoaAZoCWgPQwiJXHAGP8FyQJSGlFKUaBVL12gWR0CUGhY5DJEIdX2UKGgGaAloD0MInFHzVfIQckCUhpRSlGgVS85oFkdAlBp8nmaH9HV9lChoBmgJaA9DCOY/pN++4W9AlIaUUpRoFUvdaBZHQJQafb9If8x1fZQoaAZoCWgPQwhMbamDfEBzQJSGlFKUaBVL5WgWR0CUGt2PDHfedX2UKGgGaAloD0MIh6jCn2FicECUhpRSlGgVS9NoFkdAlBreMZP2wnV9lChoBmgJaA9DCD4kfO9vRW1AlIaUUpRoFUveaBZHQJQbGxVyWAx1fZQoaAZoCWgPQwj2fM1yGbpyQJSGlFKUaBVL6mgWR0CUG0vDxb0OdX2UKGgGaAloD0MI8MLWbKWPcUCUhpRSlGgVS/5oFkdAlBtz4593KXV9lChoBmgJaA9DCA/yejAp425AlIaUUpRoFUvUaBZHQJQbvdCVryl1fZQoaAZoCWgPQwgGnnsP1wJwQJSGlFKUaBVL8GgWR0CUG8oiLVFydX2UKGgGaAloD0MIiZtTyQCXcECUhpRSlGgVS+FoFkdAlBxZRjz7M3V9lChoBmgJaA9DCLMKmwFum3BAlIaUUpRoFUvcaBZHQJQchfOUt7N1fZQoaAZoCWgPQwinBwWl6F9yQJSGlFKUaBVL4mgWR0CUHLdzGPxQdX2UKGgGaAloD0MI0A1N2SmQcUCUhpRSlGgVS+FoFkdAlB4X2dupCXV9lChoBmgJaA9DCO8eoPvy93FAlIaUUpRoFUvsaBZHQJQeMCtA9mp1fZQoaAZoCWgPQwisyOiAZHpzQJSGlFKUaBVL+WgWR0CUH1863iJgdX2UKGgGaAloD0MIh4px/mYlckCUhpRSlGgVS9hoFkdAlCAseOn2qXV9lChoBmgJaA9DCFwf1hu1bG9AlIaUUpRoFUvuaBZHQJQgjMeOn2t1fZQoaAZoCWgPQwjjNEQVvo1xQJSGlFKUaBVNEQFoFkdAlCDA+MZP23V9lChoBmgJaA9DCM6JPbSP73JAlIaUUpRoFU0IAWgWR0CUIOr7wazedX2UKGgGaAloD0MIrWnecUpQckCUhpRSlGgVS/1oFkdAlCD6FRHf/HV9lChoBmgJaA9DCPTfg9euHnBAlIaUUpRoFUvraBZHQJQhIn1Fpfx1fZQoaAZoCWgPQwjuYMQ+wftyQJSGlFKUaBVNFQFoFkdAlCFASFoL5XV9lChoBmgJaA9DCCV1ApoIVlNAlIaUUpRoFUu6aBZHQJQhafRNRFZ1fZQoaAZoCWgPQwjD81Kx8Y1zQJSGlFKUaBVL6mgWR0CUIW3sHB1tdX2UKGgGaAloD0MI/IwLB0KlckCUhpRSlGgVTQMBaBZHQJQiBEtuk1x1fZQoaAZoCWgPQwjrNT0o6CZwQJSGlFKUaBVL52gWR0CUIjJC0F8pdX2UKGgGaAloD0MIO6qaIOqOckCUhpRSlGgVTQgBaBZHQJQixMvh60J1fZQoaAZoCWgPQwjAsz16w6JwQJSGlFKUaBVL2GgWR0CUI4ytV7x/dX2UKGgGaAloD0MIyzDuBtHxb0CUhpRSlGgVS+poFkdAlCQZHiFTN3V9lChoBmgJaA9DCJwYkpMJ2HJAlIaUUpRoFUvbaBZHQJQk33qRlpZ1fZQoaAZoCWgPQwgr9pfdU2NxQJSGlFKUaBVL0GgWR0CUJV9Ujs2OdX2UKGgGaAloD0MI4C77dec6cUCUhpRSlGgVS9VoFkdAlCXaNAC4jXV9lChoBmgJaA9DCBR7aB+rtXNAlIaUUpRoFUvYaBZHQJQmR2TxG2F1fZQoaAZoCWgPQwglJNI2fktxQJSGlFKUaBVL9GgWR0CUJvEnLJS0dX2UKGgGaAloD0MIq8spAbFHckCUhpRSlGgVS+poFkdAlCcSVGCqZXV9lChoBmgJaA9DCN9RY0KMX3FAlIaUUpRoFUvnaBZHQJQnH8iwB5p1fZQoaAZoCWgPQwi5qBYRhStxQJSGlFKUaBVNAAFoFkdAlCeBPfsNUnV9lChoBmgJaA9DCNIb7iM3OG1AlIaUUpRoFUvvaBZHQJQniWJJoTR1fZQoaAZoCWgPQwifkJ23cTVwQJSGlFKUaBVL72gWR0CUJ5IAfdRBdX2UKGgGaAloD0MIajS5GMOxcUCUhpRSlGgVS+1oFkdAlCgmZeAuqXV9lChoBmgJaA9DCPIolfCEJ3NAlIaUUpRoFUvzaBZHQJQoe7Xg9/11fZQoaAZoCWgPQwj9hR4xuvJyQJSGlFKUaBVL42gWR0CUKLJ7sv7FdX2UKGgGaAloD0MIzA2GOuwlc0CUhpRSlGgVS9xoFkdAlClGUfPom3V9lChoBmgJaA9DCDgxJCcTy3NAlIaUUpRoFUvuaBZHQJQqUMEzO5d1fZQoaAZoCWgPQwh0z7pGy15uQJSGlFKUaBVL0GgWR0CUKs9lVcUudX2UKGgGaAloD0MI5Euo4PCickCUhpRSlGgVS/9oFkdAlCurDhtLtnV9lChoBmgJaA9DCLSqJR1lHnJAlIaUUpRoFUvpaBZHQJQsC68QI2R1fZQoaAZoCWgPQwjAIVSpGbpxQJSGlFKUaBVL3GgWR0CULCEGZ/kOdX2UKGgGaAloD0MIj1AzpIp/cUCUhpRSlGgVS9NoFkdAlCx7HQyAQXV9lChoBmgJaA9DCD874Lqiq3BAlIaUUpRoFUvJaBZHQJQsvfgrH2h1fZQoaAZoCWgPQwhMjGX6pXhvQJSGlFKUaBVL4mgWR0CULPtkWhysdX2UKGgGaAloD0MIRrWIKKYAcUCUhpRSlGgVS+toFkdAlC1At4A0bnV9lChoBmgJaA9DCNnqckrAQHJAlIaUUpRoFUvhaBZHQJQtZfCyhSN1fZQoaAZoCWgPQwi/gjRjUd9yQJSGlFKUaBVL9WgWR0CULdrHU+cIdX2UKGgGaAloD0MIM2spIC2Jc0CUhpRSlGgVS/RoFkdAlC5zBInSfHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
- ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 496,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
- "gae_lambda": 0.985,
82
- "ent_coef": 0.0,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 8,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f062cb69870>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f062cb69900>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f062cb69990>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f062cb69a20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f062cb69ab0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f062cb69b40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f062cb69bd0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f062cb69c60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f062cb69cf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f062cb69d80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f062cb69e10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f062cb69ea0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f062cb6d300>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1686970095412437868,
30
+ "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOejz2klZ09aiyfva41Eb7lX2a7DihCPQAAAAAAAAAAGqgHPaJa6D5OyCm9hWB5vlvzdDzWkdS7AAAAAAAAAADNHq88e1rJPsv4iT0x3ZC+bdZ1Pae0Ej0AAAAAAAAAAGYMmj2ONJM/0v18Pqf//r7Px5k9qsqCPQAAAAAAAAAA6uaOPrLv1j5mn22+vcSZvqwGjjxq7eS9AAAAAAAAAAAmvjm+ZYuIP0KjkL1KauG+i906vnLnlT0AAAAAAAAAAH2sjz7mqVM/dVqhPRz6wr4aHz0+/lz4PAAAAAAAAAAA5jwGvQqreTqZyxy929dZvi38JbzSMSY9AAAAAAAAAADalMm9JckKP1LrkD1CLca+ADlQvVYGp7wAAAAAAAAAAKbKuT0RFoI9pXW/vR2yK77RpCg9ovBgvQAAAAAAAAAAhvMMPu8pVT1FvfS9UE8pvvyGkLzOJU49AAAAAAAAAABm49a8hcGnuxEFNj1CPqO9FqTUPPg8qD4AAIA/AACAP80eKj2WS2g9g+fxPU+tRL7xy+49oypUPQAAAAAAAAAAgHmzPWrLcT8LQe09gPXMvvka7D3jxJm5AAAAAAAAAABmBs079qRhujqpIbMLc/Eu7OkKOdYgwDMAAIA/AACAPxrwYj09zy8+O23uPU7/hb4s7hM+KI6jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
  "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGpAk5ZKWeMAWyUTTUBjAF0lEdAkXaPgJkXlHV9lChoBkdAcsf8Md92HWgHTTQBaAhHQJF4JvNu+AV1fZQoaAZHQHHyyxZ+x4ZoB01yAWgIR0CReRLhrFfidX2UKGgGR0Bu+ZxLkCFLaAdNNQFoCEdAkXkwMhHLBHV9lChoBkdAbl6wrUb1iGgHTSUBaAhHQJF5W+dsi0R1fZQoaAZHQHLKOLehwl1oB0vmaAhHQJF6GBXjlxR1fZQoaAZHQHJLYm1IAfdoB008AWgIR0CRelJdjXnRdX2UKGgGR0Buq2DSPU8WaAdNJwFoCEdAkXtfYraufXV9lChoBkdAbTAz7/GVA2gHTS8BaAhHQJF7n4etCAt1fZQoaAZHQFKMAJb+tKZoB0u5aAhHQJF8SdZq20B1fZQoaAZHQG5JkVvddmhoB01DAWgIR0CRfdaTOgQIdX2UKGgGR0BtJJNfw7T2aAdNEgFoCEdAkX6nmaH9FXV9lChoBkdAcGANpdrwfGgHTSUBaAhHQJGAEA5q/M51fZQoaAZHQHIVlCkXUH9oB00dAWgIR0CRgQtUXHindX2UKGgGR0BywEr3Cbc5aAdNTwFoCEdAkYFQOrhisnV9lChoBkdAcMZAgxJumGgHTREBaAhHQJGB0txuKoB1fZQoaAZHQHIna4lQdjpoB0vkaAhHQJGEHyI55qx1fZQoaAZHQHDgiaRZED1oB016AWgIR0CRhB5zYEntdX2UKGgGR0BsnQESuhboaAdNLgFoCEdAkYVc4tHx0HV9lChoBkdActLwWFev6mgHTRkBaAhHQJGFkvPC2tx1fZQoaAZHQHCu66J66atoB00wAWgIR0CRhlx3V09ydX2UKGgGR0BxyT5ZbILgaAdNGQFoCEdAkYZyDRMN+nV9lChoBkdAcxHDgIhQnGgHTSkBaAhHQJGI651/2Cd1fZQoaAZHQG3nvNFBppNoB01yAWgIR0CRiWbCrLhadX2UKGgGR0Bza3ewcHW0aAdNAAFoCEdAkYmRrnDBM3V9lChoBkdAcaHhNM495mgHTTsBaAhHQJGKd9Cu2Z11fZQoaAZHQHHDGvKU3XJoB00HAWgIR0CRi54JNTLodX2UKGgGR0Btxm+0w8GLaAdNLQFoCEdAkYvKSkj5bnV9lChoBkdAcIEHCoCMgmgHS/hoCEdAkYvXdoFmnXV9lChoBkdAcT/kSmIj4mgHTQMBaAhHQJGMQuuieup1fZQoaAZHQHGxCSNfgJloB0v4aAhHQJGNnBVMmF91fZQoaAZHQGxte/pMYdhoB00IAWgIR0CRjhfxMFlkdX2UKGgGR0BwblVwPy08aAdNAAFoCEdAkY6dzCDVY3V9lChoBkdAch2uZkTYd2gHTUgBaAhHQJGOlBnjABV1fZQoaAZHQHEpmNvOyFBoB0v1aAhHQJGO5hd+ocd1fZQoaAZHQG9ayHM2WIJoB00iAWgIR0CRkD6/IsAedX2UKGgGR0Bxh8pjMFEBaAdNOgFoCEdAkZBrf+CK8HV9lChoBkdAbzZ5KvmozmgHTRQBaAhHQJGRirwOOKh1fZQoaAZHQGyQEl3Qla9oB00TAWgIR0CRke6ij+JhdX2UKGgGR0BwshSUC7sfaAdNJAFoCEdAkZJTbnHNo3V9lChoBkdAbpbcgyM1j2gHTT4BaAhHQJGT7uG9Htp1fZQoaAZHQG4Ih68g6ltoB00aAWgIR0CRpVNbkfcOdX2UKGgGR0Bv32e4Cp3paAdNLwFoCEdAkaV9H+ZPVXV9lChoBkdAcl8Axi5NGmgHTUsBaAhHQJGmU3xWkrR1fZQoaAZHQHC+KmXPZ7JoB00DAWgIR0CRpqaTwDvFdX2UKGgGR0BwDQAOrhitaAdNJAFoCEdAkacxsuWa+nV9lChoBkdAcSV+Y+jdpWgHTYMBaAhHQJGn9t65Xlt1fZQoaAZHQHKBJZGKAJ9oB00qAWgIR0CRqL003wTedX2UKGgGR0Bw0y3nZCfIaAdNPQFoCEdAkakQ88s+V3V9lChoBkdAcdCPPszEaWgHTQEBaAhHQJGpHk2gnMN1fZQoaAZHQHFfGelKsdVoB00NAWgIR0CRqVPDpC8fdX2UKGgGR0BvYKoMrmQsaAdL/GgIR0CRqnUaQ3gldX2UKGgGR0BxOh8kUsWgaAdNdwFoCEdAkarSE+Pik3V9lChoBkdAcRhmw7kn1GgHTS4BaAhHQJGrsD5j6N51fZQoaAZHQHFf14keIVNoB00KAWgIR0CRrOiLl3hXdX2UKGgGR0Bt5iTKT0QLaAdNUAFoCEdAka2Sgf2bonV9lChoBkdAcQydDYywfWgHTSABaAhHQJGuiA8Swnp1fZQoaAZHQHBQpDzAeq9oB00GAWgIR0CRrrQUYbbUdX2UKGgGR0BhVTxEv0yyaAdN6ANoCEdAka+FL8Jla3V9lChoBkdAb3zs1KoQ4GgHTRQBaAhHQJGv+20AtFt1fZQoaAZHQB1DtPYWcjJoB0vSaAhHQJGwBYyO7xx1fZQoaAZHQHGBbPIGQjloB01NAWgIR0CRsCE7nxJ/dX2UKGgGR0ByPMSi/O+qaAdNMgFoCEdAkbBdapxWDHV9lChoBkdAchyDx9XtB2gHTQsBaAhHQJGwY7tAs051fZQoaAZHQHDyTg/C66JoB00UAWgIR0CRsUhysCDFdX2UKGgGR0BzStg2Ifr9aAdNDgFoCEdAkbFcM3IdVHV9lChoBkdAb+4yad+Xq2gHTRUBaAhHQJGy0u6ErXl1fZQoaAZHQHHrNW6shgVoB01IAWgIR0CRsxVLzwtrdX2UKGgGR0ByMa5paiblaAdNKgFoCEdAkbP9Bv73wnV9lChoBkdAcnmfHxSYPWgHTQABaAhHQJG084BFNL11fZQoaAZHQHFhWz0HyEtoB00qAWgIR0CRtQTNdJJ5dX2UKGgGR0BtYWjGkvboaAdL92gIR0CRtWVKf4ATdX2UKGgGR0ByPukEcKgJaAdL32gIR0CRtb57gKnfdX2UKGgGR0ByhHBBRhttaAdL7GgIR0CRtgT7EYO2dX2UKGgGR0Bw8dP557gLaAdL92gIR0CRt7dHDrJKdX2UKGgGR0BypjaTOgQIaAdNAwFoCEdAkbjV1nuiOHV9lChoBkdAcTKeLNwBHWgHTQEBaAhHQJG5b3Cbc451fZQoaAZHQG7Cp+c6Nl1oB00pAWgIR0CRux63y7PIdX2UKGgGR0BzJlwrDqGDaAdL0WgIR0CRu1n2ZiNLdX2UKGgGR0BsQmsT37DVaAdNOQFoCEdAkbtzgQ6IWXV9lChoBkdAb4WSZBsyi2gHTQwBaAhHQJG7c9kjHGV1fZQoaAZHQHJwGetjkMloB01cAWgIR0CRvMZaFEiMdX2UKGgGR0Bx64OH31zyaAdNSAFoCEdAkb4r9AHE/HV9lChoBkdAcLDlRxcVxmgHS/xoCEdAkb6V4LThHnV9lChoBkdAckD1PWQOnWgHTRsBaAhHQJG+2pkwvg51fZQoaAZHQG4CwUHpr1xoB00iAWgIR0CRwgwPAfuDdX2UKGgGR0BurdFBppN9aAdNLwFoCEdAkcI7fcer/HV9lChoBkdAb6KofjjrA2gHTTgBaAhHQJHCmB6KLsN1fZQoaAZHQHIesEq2BrhoB00hAWgIR0CRwtSowVTKdX2UKGgGR0BwH2Z7XxvvaAdNKgFoCEdAkcLjWkJrtXV9lChoBkdAccbWn0kGA2gHTQ0BaAhHQJHDtntfG+91fZQoaAZHQG62lTvRZ2ZoB00HAWgIR0CRxSoOQQtjdX2UKGgGR0By2cDp1RtQaAdL7mgIR0CRxaNiH6/JdX2UKGgGR0BwXBTWGyooaAdL72gIR0CRxdBInSfEdX2UKGgGR0Bw7Ic3l0YCaAdL/mgIR0CRxklFMIu5dX2UKGgGR0Bx+0AXEZR9aAdNQQFoCEdAkcaCJKraNHV9lChoBkdAbHqaMrEtNGgHTQQBaAhHQJHHRlGwzLx1fZQoaAZHQHKVgZflZHNoB00nAWgIR0CRx14z7/GVdX2UKGgGR0By2/6YVqN7aAdL6mgIR0CRx8s/pt78dX2UKGgGR0BslfXkHUtqaAdNEgFoCEdAkch+enQ6ZHVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:09ca596ea507cdc66785663418eab7617f4b535ad6a913f4435b9924f900db35
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a84eaa170ccc218225ba5d9f9cd6e427fed685582e24c012e3f655a3a7c3c6b
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a5f76be22d05d83e91bb38a64e8ebd057b44216db67369460d3636836b916c9b
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0eddaf6012fffe90f389ca033ac349b4bc334d374d1dffdd5964887d7a8b180
3
+ size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33be25aaa249774d7a06548b52979578e24f2fc86bce7dde458efd970b875144
3
- size 218028
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6638da5835407732b09b057bc96ed7a18e7a258bca52811da3a29cddb0616d5a
3
+ size 165495
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 279.29274049039464, "std_reward": 18.13637196730189, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-15T05:40:13.958418"}
 
1
+ {"mean_reward": 264.4778736, "std_reward": 17.70185684378386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T03:12:12.392571"}