--- language: - ml license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - thennal/IMaSC - thennal/ulca_ml - thennal/msc - thennal/indic_tts_ml metrics: - wer model-index: - name: Whisper Medium Malayalam - Thennal D K results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ml split: test args: ml metrics: - type: wer value: 38.62068965517241 name: Wer - type: cer value: 7.325639739086803 name: Cer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: FLEURS type: google/fleurs config: ml_in split: test args: ml_in metrics: - type: wer value: 27.850740045862 name: Wer - type: cer value: 8.821352343856674 name: Cer - type: wer value: 11.85 name: WER --- # Whisper Medium Malayalam This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - WER: 38.6207 - CER: 7.3256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2