Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +34 -22
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 269.26 +/- 19.81
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x2824d81f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x2824d8280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x2824d8310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x2824d83a0>", "_build": "<function ActorCriticPolicy._build at 0x2824d8430>", "forward": "<function ActorCriticPolicy.forward at 0x2824d84c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x2824d8550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x2824d85e0>", "_predict": "<function ActorCriticPolicy._predict at 0x2824d8670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x2824d8700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x2824d8790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x2824d8820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2824c71c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x12bad5000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x12bad5090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x12bad5120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x12bad51b0>", "_build": "<function ActorCriticPolicy._build at 0x12bad5240>", "forward": "<function ActorCriticPolicy.forward at 0x12bad52d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x12bad5360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x12bad53f0>", "_predict": "<function ActorCriticPolicy._predict at 0x12bad5480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x12bad5510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x12bad55a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x12bad5630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12bac76c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678794003569639000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG1FTj4P7168hkMtO5TaNrmLUtK90zpWugAAgD8AAIA/bdA9Pk6rOz++UaY9ocnOvjIGtz19cQq9AAAAAAAAAACGJy8+YSSMvK6IpLovJPu4a37+vS3juTkAAIA/AACAP60hJT7EQwc++v89vhtpNr4R3te8bMGFvAAAAAAAAAAAWkzrvU+8ET0HZks+VBs0vubTCz1QjtI9AAAAAAAAAABmQtS8C240P7igfLxagBi/KTA5vUuuEzwAAAAAAAAAANq5470sjJw/s9qrvgWEDr+LfCq+0gvJvQAAAAAAAAAAgMsPvqQAGru8Ojm5dsAPtqpnVzxjQ1o4AACAPwAAgD/zLDg+/DQqPdLqgb1sZ0S+xr6aPBKRAz0AAAAAAAAAAI2hrT3DsQK6KlfZNERi+C4pzFC7Rq8ftAAAgD8AAIA/0wQXPg2qET/Gm6m9ebfBvia4+zxWH5q9AAAAAAAAAABmf6G9AF6gPxoVW75Nzxu/CJLBvff9Lr0AAAAAAAAAAO2SKD4Pa1W8MJC5O7dEQbq5lcu9dYgNuwAAgD8AAIA/2vExvvTPlryTU1i6NyO9uNvrAT5LfpA5AACAPwAAgD+6HVY+10c0u4quMbOxxFcyATyGvN2d/zMAAIA/AACAP3rkJL7BtYK8eCKfvFNRErtzne89mRgTPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/lFCfpybkCUhpRSlIwBbJRNYwGMAXSUR0CBMVLRKHwgdX2UKGgGaAloD0MIgZICC+DFY0CUhpRSlGgVTegDaBZHQIEx6T8pCrt1fZQoaAZoCWgPQwhnmrD9ZNdaQJSGlFKUaBVN6ANoFkdAgTJfTb349HV9lChoBmgJaA9DCI6VmGdlJnFAlIaUUpRoFU0VAWgWR0CBMn5/LDAKdX2UKGgGaAloD0MIrYpwk9FYbUCUhpRSlGgVS99oFkdAgTPGEoOQQ3V9lChoBmgJaA9DCCUgJuHCLHBAlIaUUpRoFU0QAWgWR0CBNCMdcSoPdX2UKGgGaAloD0MIUMQihp2zY0CUhpRSlGgVTegDaBZHQIE0LhrFfiR1fZQoaAZoCWgPQwiiKqbSz75uQJSGlFKUaBVLzmgWR0CBNGtjCpFTdX2UKGgGaAloD0MIZQETuPWNcUCUhpRSlGgVS+xoFkdAgTYAIhQm/nV9lChoBmgJaA9DCFz/rs+cs3FAlIaUUpRoFUvraBZHQIE5ONBF/hF1fZQoaAZoCWgPQwjaqE4HsthvQJSGlFKUaBVLzGgWR0CBOVBzFMqSdX2UKGgGaAloD0MIPV+zXPZZcUCUhpRSlGgVS9loFkdAgTngAp8WsXV9lChoBmgJaA9DCNFdEmdFNnFAlIaUUpRoFUvdaBZHQIE6jX8O09h1fZQoaAZoCWgPQwh6NNWTuaFwQJSGlFKUaBVL3WgWR0CBOvgPVd5ZdX2UKGgGaAloD0MIoI1cN2UWcECUhpRSlGgVS+RoFkdAgTtitA9mpXV9lChoBmgJaA9DCLvW3qeqT3BAlIaUUpRoFUvKaBZHQIE8CRU3n6l1fZQoaAZoCWgPQwhEp+fdmINwQJSGlFKUaBVLzWgWR0CBPB3hXKbKdX2UKGgGaAloD0MITny1ozieY0CUhpRSlGgVTegDaBZHQIE82vB7/n51fZQoaAZoCWgPQwjHDipxnTJzQJSGlFKUaBVL72gWR0CBPRJYDDCQdX2UKGgGaAloD0MIIa6cvTPeX0CUhpRSlGgVTegDaBZHQIE9NivxH5J1fZQoaAZoCWgPQwhoBvGBnd9wQJSGlFKUaBVL/GgWR0CBPf5C4SYgdX2UKGgGaAloD0MI860P680Lc0CUhpRSlGgVS91oFkdAgT578FY+0XV9lChoBmgJaA9DCGHB/YCHeGxAlIaUUpRoFUvTaBZHQIFA9kJ8fFJ1fZQoaAZoCWgPQwhy3CkdLItwQJSGlFKUaBVL2WgWR0CBQc2Dxsl+dX2UKGgGaAloD0MIzhjmBK1dckCUhpRSlGgVS99oFkdAgUMj7Ikqt3V9lChoBmgJaA9DCCf3OxRF93FAlIaUUpRoFUvZaBZHQIFDT4rSVnp1fZQoaAZoCWgPQwj+uP3ySQRzQJSGlFKUaBVL+WgWR0CBQ85S3soldX2UKGgGaAloD0MIfo0kQTiuYUCUhpRSlGgVTegDaBZHQIFEXfTCtRx1fZQoaAZoCWgPQwgDQBU3brFsQJSGlFKUaBVL42gWR0CBRHJAdGRWdX2UKGgGaAloD0MI/KVFfRLcbECUhpRSlGgVS+xoFkdAgUSuR1X/53V9lChoBmgJaA9DCE6c3O+QmXNAlIaUUpRoFUvlaBZHQIFFSOo5xR51fZQoaAZoCWgPQwiE2JlCpxByQJSGlFKUaBVL5WgWR0CBRWlabF0gdX2UKGgGaAloD0MIuJVemw02cECUhpRSlGgVS/NoFkdAgUWG8M/hVHV9lChoBmgJaA9DCCxhbYzdbXJAlIaUUpRoFU2EAWgWR0CBR079Q40edX2UKGgGaAloD0MIiULLuj8VckCUhpRSlGgVTSEBaBZHQIFIED0UXYV1fZQoaAZoCWgPQwjulA7Wf6hwQJSGlFKUaBVL6WgWR0CBSSfh/Aj6dX2UKGgGaAloD0MIeLXcmcl0ckCUhpRSlGgVS9doFkdAgUlD2rXDnHV9lChoBmgJaA9DCAvT9xqCq3FAlIaUUpRoFUvRaBZHQIFKX1xsEaF1fZQoaAZoCWgPQwh5zas6qzBvQJSGlFKUaBVL1GgWR0CBSu9/z8P4dX2UKGgGaAloD0MIqn6l8+GMYUCUhpRSlGgVTegDaBZHQIFLba24NI91fZQoaAZoCWgPQwh9QQsJGERuQJSGlFKUaBVL0GgWR0CBS6Q/5ckddX2UKGgGaAloD0MI5pE/GHgpc0CUhpRSlGgVS/toFkdAgUvGSZBsynV9lChoBmgJaA9DCDdwB+oUpG5AlIaUUpRoFUvdaBZHQIFL15v99+h1fZQoaAZoCWgPQwgr2bERCD1iQJSGlFKUaBVN6ANoFkdAgUzbBGhEjXV9lChoBmgJaA9DCPq5oSn7B3FAlIaUUpRoFUviaBZHQIFM44Otnwp1fZQoaAZoCWgPQwiK6NfWj89wQJSGlFKUaBVNAAFoFkdAgUzskhRqGnV9lChoBmgJaA9DCNy7Bn0pPHFAlIaUUpRoFUvtaBZHQIFNQ5imVJN1fZQoaAZoCWgPQwhbCkj7X1twQJSGlFKUaBVL1mgWR0CBTkpLmITHdX2UKGgGaAloD0MI97GC34Zrb0CUhpRSlGgVTREBaBZHQIFOSkyk9EF1fZQoaAZoCWgPQwi6g9iZwqVwQJSGlFKUaBVLzmgWR0CBT5nIQvpRdX2UKGgGaAloD0MI8lt0stRLbUCUhpRSlGgVS9ZoFkdAgU+/jbSJCXV9lChoBmgJaA9DCCoBMQkX8m9AlIaUUpRoFUvAaBZHQIFRThDPWx11fZQoaAZoCWgPQwhNZyeDo29vQJSGlFKUaBVL6WgWR0CBUWlruYx+dX2UKGgGaAloD0MImtGPhpO6cECUhpRSlGgVS9loFkdAgVHP+wTufHV9lChoBmgJaA9DCEOM17yqEG9AlIaUUpRoFUvzaBZHQIFSPgUDdQB1fZQoaAZoCWgPQwiZY3lX/SBwQJSGlFKUaBVL4mgWR0CBUk72+PBBdX2UKGgGaAloD0MI71cBvpsAcECUhpRSlGgVTUQBaBZHQIFST7Q9ic51fZQoaAZoCWgPQwjhC5OpQmJyQJSGlFKUaBVL8mgWR0CBUuzJIUaidX2UKGgGaAloD0MIIT1FDhHGcECUhpRSlGgVS9loFkdAgVMghje9BnV9lChoBmgJaA9DCDsdyHrqum9AlIaUUpRoFUv4aBZHQIFUAsf7rLR1fZQoaAZoCWgPQwi3lslw/CRwQJSGlFKUaBVL82gWR0CBVFh5xBE8dX2UKGgGaAloD0MI1c4wtaUKb0CUhpRSlGgVS9loFkdAgVTESM98qnV9lChoBmgJaA9DCOS/QBBgWHFAlIaUUpRoFUvsaBZHQIFVVrylN111fZQoaAZoCWgPQwhZTGw+rktzQJSGlFKUaBVL4WgWR0CBVoC8OCoTdX2UKGgGaAloD0MIzc03ontOc0CUhpRSlGgVS+xoFkdAgVcEtVaOgnV9lChoBmgJaA9DCJELzuDvX3BAlIaUUpRoFUvXaBZHQIFYEvCdjG11fZQoaAZoCWgPQwgZ5C7CVHpwQJSGlFKUaBVLwWgWR0CBWEBzV+ZxdX2UKGgGaAloD0MIjBAebdz9cECUhpRSlGgVS+loFkdAgVm7KRuCPXV9lChoBmgJaA9DCNmvO935r3BAlIaUUpRoFUv0aBZHQIFaFkz41xd1fZQoaAZoCWgPQwg+6xoth4ZxQJSGlFKUaBVL42gWR0CBWlvJiiItdX2UKGgGaAloD0MIZYuk3WiobkCUhpRSlGgVS89oFkdAgVr9y925hHV9lChoBmgJaA9DCDP7PEZ5mWxAlIaUUpRoFUv1aBZHQIFbR8x9G7V1fZQoaAZoCWgPQwijQJ/IEyVwQJSGlFKUaBVL22gWR0CBW8/EfkmydX2UKGgGaAloD0MIVyb8Uv9wcUCUhpRSlGgVS85oFkdAgVvYkE9t/HV9lChoBmgJaA9DCGd/oNx2eHFAlIaUUpRoFUv2aBZHQIFfj3ueBhB1fZQoaAZoCWgPQwiVYdwNoqNeQJSGlFKUaBVN6ANoFkdAgWBJpFkQPXV9lChoBmgJaA9DCJT43Ak243JAlIaUUpRoFUvfaBZHQIFgye05U991fZQoaAZoCWgPQwiUL2ghwSdwQJSGlFKUaBVL5WgWR0CBYNQyhzvJdX2UKGgGaAloD0MIWcAEbh3qckCUhpRSlGgVTR0BaBZHQIFhv/zasZJ1fZQoaAZoCWgPQwh7oYDtYB9tQJSGlFKUaBVL42gWR0CBYm/sVtXQdX2UKGgGaAloD0MIzCcrhuvIcUCUhpRSlGgVS/hoFkdAgWOcuanaWXV9lChoBmgJaA9DCCbkg55NXm9AlIaUUpRoFUvbaBZHQIFjvLmp2ll1fZQoaAZoCWgPQwjB4Jo7ukxxQJSGlFKUaBVL6GgWR0CBY+zdk8RudX2UKGgGaAloD0MIIuLmVDLBbECUhpRSlGgVTZQBaBZHQIFkPsVtXPt1fZQoaAZoCWgPQwgB28GI/X9wQJSGlFKUaBVL5WgWR0CBZJ6JIlMRdX2UKGgGaAloD0MI3nNgOUKEc0CUhpRSlGgVTUEBaBZHQIFmM2LpA2R1fZQoaAZoCWgPQwhf04OC0kRvQJSGlFKUaBVL5WgWR0CBZ9SOzY29dX2UKGgGaAloD0MIXU90XbhpckCUhpRSlGgVS9poFkdAgWiBN/OMVHV9lChoBmgJaA9DCJ1Hxf9dZ3JAlIaUUpRoFUvoaBZHQIFoi5AhStN1fZQoaAZoCWgPQwiF61G4Ho5uQJSGlFKUaBVL32gWR0CBaLfx+a0AdX2UKGgGaAloD0MIdNAlHHpgcECUhpRSlGgVS91oFkdAgWl/f4yoGnV9lChoBmgJaA9DCGa7Qh+sm3FAlIaUUpRoFUvkaBZHQIFqZo7FKkF1fZQoaAZoCWgPQwiQiCmRhLxyQJSGlFKUaBVL4mgWR0CBa3Dqnm7rdX2UKGgGaAloD0MIB5s6j8pqcUCUhpRSlGgVS+FoFkdAgWu08mrsB3V9lChoBmgJaA9DCOHTnLxIq3FAlIaUUpRoFUvXaBZHQIFsGDBdld11fZQoaAZoCWgPQwhmTSzw1chyQJSGlFKUaBVL12gWR0CBbfj5KvmpdX2UKGgGaAloD0MI1V5E27GUZECUhpRSlGgVTegDaBZHQIFvD/XGwRp1fZQoaAZoCWgPQwhEigESTTVvQJSGlFKUaBVL3mgWR0CBcAzWwu/UdX2UKGgGaAloD0MI38X7cfsKbkCUhpRSlGgVS91oFkdAgXDAyuZCwHV9lChoBmgJaA9DCNvgRPTrQ3BAlIaUUpRoFUvgaBZHQIFxIIhQm/p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:436c61bd3d2a0ddaea8cad5a70856ee3a23a9eb161d83e9081680d599c52e826
|
3 |
+
size 147071
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,28 +43,40 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
},
|
58 |
-
"_last_obs":
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"_last_original_obs": null,
|
61 |
"_episode_num": 0,
|
62 |
"use_sde": false,
|
63 |
"sde_sample_freq": -1,
|
64 |
-
"_current_progress_remaining":
|
65 |
-
"ep_info_buffer":
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
"n_steps": 2048,
|
69 |
"gamma": 0.99,
|
70 |
"gae_lambda": 0.95,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x12bad5000>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x12bad5090>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x12bad5120>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x12bad51b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x12bad5240>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x12bad52d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x12bad5360>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x12bad53f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x12bad5480>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x12bad5510>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x12bad55a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x12bad5630>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x12bac76c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678794003569639000,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdy9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC1wbGF5Z3JvdW5kL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx3L29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsLXBsYXlncm91bmQvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG1FTj4P7168hkMtO5TaNrmLUtK90zpWugAAgD8AAIA/bdA9Pk6rOz++UaY9ocnOvjIGtz19cQq9AAAAAAAAAACGJy8+YSSMvK6IpLovJPu4a37+vS3juTkAAIA/AACAP60hJT7EQwc++v89vhtpNr4R3te8bMGFvAAAAAAAAAAAWkzrvU+8ET0HZks+VBs0vubTCz1QjtI9AAAAAAAAAABmQtS8C240P7igfLxagBi/KTA5vUuuEzwAAAAAAAAAANq5470sjJw/s9qrvgWEDr+LfCq+0gvJvQAAAAAAAAAAgMsPvqQAGru8Ojm5dsAPtqpnVzxjQ1o4AACAPwAAgD/zLDg+/DQqPdLqgb1sZ0S+xr6aPBKRAz0AAAAAAAAAAI2hrT3DsQK6KlfZNERi+C4pzFC7Rq8ftAAAgD8AAIA/0wQXPg2qET/Gm6m9ebfBvia4+zxWH5q9AAAAAAAAAABmf6G9AF6gPxoVW75Nzxu/CJLBvff9Lr0AAAAAAAAAAO2SKD4Pa1W8MJC5O7dEQbq5lcu9dYgNuwAAgD8AAIA/2vExvvTPlryTU1i6NyO9uNvrAT5LfpA5AACAPwAAgD+6HVY+10c0u4quMbOxxFcyATyGvN2d/zMAAIA/AACAP3rkJL7BtYK8eCKfvFNRErtzne89mRgTPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/lFCfpybkCUhpRSlIwBbJRNYwGMAXSUR0CBMVLRKHwgdX2UKGgGaAloD0MIgZICC+DFY0CUhpRSlGgVTegDaBZHQIEx6T8pCrt1fZQoaAZoCWgPQwhnmrD9ZNdaQJSGlFKUaBVN6ANoFkdAgTJfTb349HV9lChoBmgJaA9DCI6VmGdlJnFAlIaUUpRoFU0VAWgWR0CBMn5/LDAKdX2UKGgGaAloD0MIrYpwk9FYbUCUhpRSlGgVS99oFkdAgTPGEoOQQ3V9lChoBmgJaA9DCCUgJuHCLHBAlIaUUpRoFU0QAWgWR0CBNCMdcSoPdX2UKGgGaAloD0MIUMQihp2zY0CUhpRSlGgVTegDaBZHQIE0LhrFfiR1fZQoaAZoCWgPQwiiKqbSz75uQJSGlFKUaBVLzmgWR0CBNGtjCpFTdX2UKGgGaAloD0MIZQETuPWNcUCUhpRSlGgVS+xoFkdAgTYAIhQm/nV9lChoBmgJaA9DCFz/rs+cs3FAlIaUUpRoFUvraBZHQIE5ONBF/hF1fZQoaAZoCWgPQwjaqE4HsthvQJSGlFKUaBVLzGgWR0CBOVBzFMqSdX2UKGgGaAloD0MIPV+zXPZZcUCUhpRSlGgVS9loFkdAgTngAp8WsXV9lChoBmgJaA9DCNFdEmdFNnFAlIaUUpRoFUvdaBZHQIE6jX8O09h1fZQoaAZoCWgPQwh6NNWTuaFwQJSGlFKUaBVL3WgWR0CBOvgPVd5ZdX2UKGgGaAloD0MIoI1cN2UWcECUhpRSlGgVS+RoFkdAgTtitA9mpXV9lChoBmgJaA9DCLvW3qeqT3BAlIaUUpRoFUvKaBZHQIE8CRU3n6l1fZQoaAZoCWgPQwhEp+fdmINwQJSGlFKUaBVLzWgWR0CBPB3hXKbKdX2UKGgGaAloD0MITny1ozieY0CUhpRSlGgVTegDaBZHQIE82vB7/n51fZQoaAZoCWgPQwjHDipxnTJzQJSGlFKUaBVL72gWR0CBPRJYDDCQdX2UKGgGaAloD0MIIa6cvTPeX0CUhpRSlGgVTegDaBZHQIE9NivxH5J1fZQoaAZoCWgPQwhoBvGBnd9wQJSGlFKUaBVL/GgWR0CBPf5C4SYgdX2UKGgGaAloD0MI860P680Lc0CUhpRSlGgVS91oFkdAgT578FY+0XV9lChoBmgJaA9DCGHB/YCHeGxAlIaUUpRoFUvTaBZHQIFA9kJ8fFJ1fZQoaAZoCWgPQwhy3CkdLItwQJSGlFKUaBVL2WgWR0CBQc2Dxsl+dX2UKGgGaAloD0MIzhjmBK1dckCUhpRSlGgVS99oFkdAgUMj7Ikqt3V9lChoBmgJaA9DCCf3OxRF93FAlIaUUpRoFUvZaBZHQIFDT4rSVnp1fZQoaAZoCWgPQwj+uP3ySQRzQJSGlFKUaBVL+WgWR0CBQ85S3soldX2UKGgGaAloD0MIfo0kQTiuYUCUhpRSlGgVTegDaBZHQIFEXfTCtRx1fZQoaAZoCWgPQwgDQBU3brFsQJSGlFKUaBVL42gWR0CBRHJAdGRWdX2UKGgGaAloD0MI/KVFfRLcbECUhpRSlGgVS+xoFkdAgUSuR1X/53V9lChoBmgJaA9DCE6c3O+QmXNAlIaUUpRoFUvlaBZHQIFFSOo5xR51fZQoaAZoCWgPQwiE2JlCpxByQJSGlFKUaBVL5WgWR0CBRWlabF0gdX2UKGgGaAloD0MIuJVemw02cECUhpRSlGgVS/NoFkdAgUWG8M/hVHV9lChoBmgJaA9DCCxhbYzdbXJAlIaUUpRoFU2EAWgWR0CBR079Q40edX2UKGgGaAloD0MIiULLuj8VckCUhpRSlGgVTSEBaBZHQIFIED0UXYV1fZQoaAZoCWgPQwjulA7Wf6hwQJSGlFKUaBVL6WgWR0CBSSfh/Aj6dX2UKGgGaAloD0MIeLXcmcl0ckCUhpRSlGgVS9doFkdAgUlD2rXDnHV9lChoBmgJaA9DCAvT9xqCq3FAlIaUUpRoFUvRaBZHQIFKX1xsEaF1fZQoaAZoCWgPQwh5zas6qzBvQJSGlFKUaBVL1GgWR0CBSu9/z8P4dX2UKGgGaAloD0MIqn6l8+GMYUCUhpRSlGgVTegDaBZHQIFLba24NI91fZQoaAZoCWgPQwh9QQsJGERuQJSGlFKUaBVL0GgWR0CBS6Q/5ckddX2UKGgGaAloD0MI5pE/GHgpc0CUhpRSlGgVS/toFkdAgUvGSZBsynV9lChoBmgJaA9DCDdwB+oUpG5AlIaUUpRoFUvdaBZHQIFL15v99+h1fZQoaAZoCWgPQwgr2bERCD1iQJSGlFKUaBVN6ANoFkdAgUzbBGhEjXV9lChoBmgJaA9DCPq5oSn7B3FAlIaUUpRoFUviaBZHQIFM44Otnwp1fZQoaAZoCWgPQwiK6NfWj89wQJSGlFKUaBVNAAFoFkdAgUzskhRqGnV9lChoBmgJaA9DCNy7Bn0pPHFAlIaUUpRoFUvtaBZHQIFNQ5imVJN1fZQoaAZoCWgPQwhbCkj7X1twQJSGlFKUaBVL1mgWR0CBTkpLmITHdX2UKGgGaAloD0MI97GC34Zrb0CUhpRSlGgVTREBaBZHQIFOSkyk9EF1fZQoaAZoCWgPQwi6g9iZwqVwQJSGlFKUaBVLzmgWR0CBT5nIQvpRdX2UKGgGaAloD0MI8lt0stRLbUCUhpRSlGgVS9ZoFkdAgU+/jbSJCXV9lChoBmgJaA9DCCoBMQkX8m9AlIaUUpRoFUvAaBZHQIFRThDPWx11fZQoaAZoCWgPQwhNZyeDo29vQJSGlFKUaBVL6WgWR0CBUWlruYx+dX2UKGgGaAloD0MImtGPhpO6cECUhpRSlGgVS9loFkdAgVHP+wTufHV9lChoBmgJaA9DCEOM17yqEG9AlIaUUpRoFUvzaBZHQIFSPgUDdQB1fZQoaAZoCWgPQwiZY3lX/SBwQJSGlFKUaBVL4mgWR0CBUk72+PBBdX2UKGgGaAloD0MI71cBvpsAcECUhpRSlGgVTUQBaBZHQIFST7Q9ic51fZQoaAZoCWgPQwjhC5OpQmJyQJSGlFKUaBVL8mgWR0CBUuzJIUaidX2UKGgGaAloD0MIIT1FDhHGcECUhpRSlGgVS9loFkdAgVMghje9BnV9lChoBmgJaA9DCDsdyHrqum9AlIaUUpRoFUv4aBZHQIFUAsf7rLR1fZQoaAZoCWgPQwi3lslw/CRwQJSGlFKUaBVL82gWR0CBVFh5xBE8dX2UKGgGaAloD0MI1c4wtaUKb0CUhpRSlGgVS9loFkdAgVTESM98qnV9lChoBmgJaA9DCOS/QBBgWHFAlIaUUpRoFUvsaBZHQIFVVrylN111fZQoaAZoCWgPQwhZTGw+rktzQJSGlFKUaBVL4WgWR0CBVoC8OCoTdX2UKGgGaAloD0MIzc03ontOc0CUhpRSlGgVS+xoFkdAgVcEtVaOgnV9lChoBmgJaA9DCJELzuDvX3BAlIaUUpRoFUvXaBZHQIFYEvCdjG11fZQoaAZoCWgPQwgZ5C7CVHpwQJSGlFKUaBVLwWgWR0CBWEBzV+ZxdX2UKGgGaAloD0MIjBAebdz9cECUhpRSlGgVS+loFkdAgVm7KRuCPXV9lChoBmgJaA9DCNmvO935r3BAlIaUUpRoFUv0aBZHQIFaFkz41xd1fZQoaAZoCWgPQwg+6xoth4ZxQJSGlFKUaBVL42gWR0CBWlvJiiItdX2UKGgGaAloD0MIZYuk3WiobkCUhpRSlGgVS89oFkdAgVr9y925hHV9lChoBmgJaA9DCDP7PEZ5mWxAlIaUUpRoFUv1aBZHQIFbR8x9G7V1fZQoaAZoCWgPQwijQJ/IEyVwQJSGlFKUaBVL22gWR0CBW8/EfkmydX2UKGgGaAloD0MIVyb8Uv9wcUCUhpRSlGgVS85oFkdAgVvYkE9t/HV9lChoBmgJaA9DCGd/oNx2eHFAlIaUUpRoFUv2aBZHQIFfj3ueBhB1fZQoaAZoCWgPQwiVYdwNoqNeQJSGlFKUaBVN6ANoFkdAgWBJpFkQPXV9lChoBmgJaA9DCJT43Ak243JAlIaUUpRoFUvfaBZHQIFgye05U991fZQoaAZoCWgPQwiUL2ghwSdwQJSGlFKUaBVL5WgWR0CBYNQyhzvJdX2UKGgGaAloD0MIWcAEbh3qckCUhpRSlGgVTR0BaBZHQIFhv/zasZJ1fZQoaAZoCWgPQwh7oYDtYB9tQJSGlFKUaBVL42gWR0CBYm/sVtXQdX2UKGgGaAloD0MIzCcrhuvIcUCUhpRSlGgVS/hoFkdAgWOcuanaWXV9lChoBmgJaA9DCCbkg55NXm9AlIaUUpRoFUvbaBZHQIFjvLmp2ll1fZQoaAZoCWgPQwjB4Jo7ukxxQJSGlFKUaBVL6GgWR0CBY+zdk8RudX2UKGgGaAloD0MIIuLmVDLBbECUhpRSlGgVTZQBaBZHQIFkPsVtXPt1fZQoaAZoCWgPQwgB28GI/X9wQJSGlFKUaBVL5WgWR0CBZJ6JIlMRdX2UKGgGaAloD0MI3nNgOUKEc0CUhpRSlGgVTUEBaBZHQIFmM2LpA2R1fZQoaAZoCWgPQwhf04OC0kRvQJSGlFKUaBVL5WgWR0CBZ9SOzY29dX2UKGgGaAloD0MIXU90XbhpckCUhpRSlGgVS9poFkdAgWiBN/OMVHV9lChoBmgJaA9DCJ1Hxf9dZ3JAlIaUUpRoFUvoaBZHQIFoi5AhStN1fZQoaAZoCWgPQwiF61G4Ho5uQJSGlFKUaBVL32gWR0CBaLfx+a0AdX2UKGgGaAloD0MIdNAlHHpgcECUhpRSlGgVS91oFkdAgWl/f4yoGnV9lChoBmgJaA9DCGa7Qh+sm3FAlIaUUpRoFUvkaBZHQIFqZo7FKkF1fZQoaAZoCWgPQwiQiCmRhLxyQJSGlFKUaBVL4mgWR0CBa3Dqnm7rdX2UKGgGaAloD0MIB5s6j8pqcUCUhpRSlGgVS+FoFkdAgWu08mrsB3V9lChoBmgJaA9DCOHTnLxIq3FAlIaUUpRoFUvXaBZHQIFsGDBdld11fZQoaAZoCWgPQwhmTSzw1chyQJSGlFKUaBVL12gWR0CBbfj5KvmpdX2UKGgGaAloD0MI1V5E27GUZECUhpRSlGgVTegDaBZHQIFvD/XGwRp1fZQoaAZoCWgPQwhEigESTTVvQJSGlFKUaBVL3mgWR0CBcAzWwu/UdX2UKGgGaAloD0MI38X7cfsKbkCUhpRSlGgVS91oFkdAgXDAyuZCwHV9lChoBmgJaA9DCNvgRPTrQ3BAlIaUUpRoFUvgaBZHQIFxIIhQm/p1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b7afd4e02386610cfd0e4a3710ba5272de2c088dac34e9429726c6adca1e97a
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43265
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb35b3f2b37c74c93d7e03ef770dabff653cc25791470e14dd1c6b0cec725f7c
|
3 |
size 43265
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 269.25807026863595, "std_reward": 19.807838338978332, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T20:49:29.237550"}
|