File size: 3,936 Bytes
3f9c425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

# 1/sqrt(2*pi)-> 0.3989423
# 1/sqrt(2)   -> 0.70710678
# sqrt(2/pi)  -> 0.79788456

# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def bias_gelu(y, bias):
    x = bias + y
    return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype)


# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def bias_gelu_back(g, y, bias):
    """Assume that y has shape (B, D) and bias has shape (D)"""
    x = bias + y
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
        1 + tanh_out
    )
    grad_y = ff * g
    return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype)


class GeLUFunction(torch.autograd.Function):
    @staticmethod
    # bias is an optional argument
    def forward(ctx, input, bias):
        ctx.save_for_backward(input, bias)
        return bias_gelu(input, bias)

    @staticmethod
    def backward(ctx, grad_output):
        input, bias = ctx.saved_tensors
        tmp = bias_gelu_back(grad_output, input, bias)
        return tmp, tmp


bias_gelu_impl = GeLUFunction.apply

# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def gelu_fwd(x):
    return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype)


# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def gelu_bwd(g, x):
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
        1 + tanh_out
    )
    return (ff * g).to(dtype=x.dtype)


class FastGeLUFunction(torch.autograd.Function):
    @staticmethod
    # bias is an optional argument
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return gelu_fwd(input)

    @staticmethod
    def backward(ctx, grad_output):
        (input,) = ctx.saved_tensors
        tmp = gelu_bwd(grad_output, input)
        return tmp


fast_gelu_impl = FastGeLUFunction.apply


@torch.jit.script
def relu_bwd(g, x):
    return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)


@torch.jit.script
def sqrelu_fwd(x):
    r = F.relu(x)
    return (r * r).to(dtype=x.dtype)


@torch.jit.script
def sqrelu_bwd(g, x):
    return (2.0 * g * F.relu(x)).to(dtype=x.dtype)


swiglu_fwd_codestring = """
template <typename T> T swiglu_fwd(T x, T y) {
    return float(x) * float(y) / (1.0f + ::exp(-float(x)));
}
"""
swiglu_bwd_codestring = """
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
    float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
    dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
    dy = float(x) * x_sigmoid * float(g);
}
"""
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)


class SwiGLUFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, y):
        ctx.save_for_backward(x, y)
        return swiglu_fwd(x, y)

    @staticmethod
    def backward(ctx, dout):
        x, y = ctx.saved_tensors
        return swiglu_bwd(x, y, dout)

swiglu = SwiGLUFunction.apply