File size: 6,827 Bytes
3f9c425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Adapted from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_128.cu
/*
 * Copyright (c) 2020-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "decoder_masked_multihead_attention.h"
#include "decoder_masked_multihead_attention_utils.h"
#include "cuda_bf16_wrapper.h"
#include <assert.h>
#include <float.h>
#include <type_traits>

#include "decoder_masked_multihead_attention_template.hpp"

////////////////////////////////////////////////////////////////////////////////////////////////////

#define MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, THDS_PER_KEY, THDS_PER_VALUE, THDS_PER_BLOCK, DO_CROSS_ATTENTION, stream)    \
    size_t smem_sz = mmha::smem_size_in_bytes<T, DO_CROSS_ATTENTION>(params, THDS_PER_VALUE, THDS_PER_BLOCK);          \
    auto kernel = mmha::masked_multihead_attention_kernel<T, Dh, Dh_MAX, THDS_PER_KEY, THDS_PER_VALUE,                 \
                                                          THDS_PER_BLOCK, DO_CROSS_ATTENTION>;                         \
    cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_sz);                                \
    dim3 grid(params.nnz_head_idx == nullptr ? params.num_heads : params.nnz_heads, params.batch_size);                \
    kernel<<<grid, THDS_PER_BLOCK, smem_sz, stream>>>(params)

////////////////////////////////////////////////////////////////////////////////////////////////////

// !!! Specialize the launcher for Cross attention
template<typename T, int Dh, int Dh_MAX, typename KERNEL_PARAMS_TYPE>
void mmha_launch_kernel(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
{
    constexpr int  THREADS_PER_VALUE  = Dh_MAX * sizeof(T) / 16;
    constexpr bool DO_CROSS_ATTENTION = std::is_same<KERNEL_PARAMS_TYPE, Cross_multihead_attention_params<T>>::value;
    int            tlength            = (DO_CROSS_ATTENTION) ? params.memory_max_len : params.timestep;
    // printf("tlength, CROSS_ATTENTION = %d, %d\n", tlength, DO_CROSS_ATTENTION);
    if (tlength < 32) {
        MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 4, THREADS_PER_VALUE, 64, DO_CROSS_ATTENTION, stream);
    }
    else if (tlength < 2048) {
        MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 2, THREADS_PER_VALUE, 128, DO_CROSS_ATTENTION, stream);
    }
    else {
        MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 1, THREADS_PER_VALUE, 256, DO_CROSS_ATTENTION, stream);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

#undef MMHA_LAUNCH_KERNEL

template<typename T, typename KERNEL_PARAMS_TYPE>
void multihead_attention_(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
{
    switch (params.hidden_size_per_head) {
        case 32:
            mmha_launch_kernel<T, 32, 32, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 48:
            mmha_launch_kernel<T, 48, 64, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 64:
            mmha_launch_kernel<T, 64, 64, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 80:
            mmha_launch_kernel<T, 80, 128, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 96:
            mmha_launch_kernel<T, 96, 128, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 128:
            mmha_launch_kernel<T, 128, 128, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 160:
            mmha_launch_kernel<T, 160, 256, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 192:
            mmha_launch_kernel<T, 192, 256, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 224:
            mmha_launch_kernel<T, 224, 256, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        case 256:
            mmha_launch_kernel<T, 256, 256, KERNEL_PARAMS_TYPE>(params, stream);
            break;
        default:
            assert(false);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream)
{
    multihead_attention_<float, Masked_multihead_attention_params<float>>(params, stream);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
{
    multihead_attention_<uint16_t, Masked_multihead_attention_params<uint16_t>>(params, stream);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef ENABLE_BF16
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
                                const cudaStream_t&                                     stream)
{
    multihead_attention_<__nv_bfloat16, Masked_multihead_attention_params<__nv_bfloat16>>(params, stream);
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////

void cross_multihead_attention(const Cross_multihead_attention_params<float>& params, const cudaStream_t& stream)
{
    multihead_attention_<float, Cross_multihead_attention_params<float>>(params, stream);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void cross_multihead_attention(const Cross_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
{
    multihead_attention_<uint16_t, Cross_multihead_attention_params<uint16_t>>(params, stream);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef ENABLE_BF16
void cross_multihead_attention(const Cross_multihead_attention_params<__nv_bfloat16>& params,
                               const cudaStream_t&                                    stream)
{
    multihead_attention_<__nv_bfloat16, Cross_multihead_attention_params<__nv_bfloat16>>(params, stream);
}
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////