File size: 57,953 Bytes
3f9c425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
// Downloaded from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
/*
 * Copyright (c) 2020-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#pragma once

#include "decoder_masked_multihead_attention.h"
#include "decoder_masked_multihead_attention_utils.h"
#include "cuda_bf16_wrapper.h"
#include "cuda_bf16_fallbacks.cuh"
#include <assert.h>
#include <float.h>
#include <type_traits>

// #define MMHA_USE_HMMA_FOR_REDUCTION

// Below are knobs to extend FP32 accumulation for higher FP16 accuracy

// Does not seem to affect the accuracy that much
#define MMHA_USE_FP32_ACUM_FOR_FMA

// Seems to slightly improve the accuracy
#define MMHA_USE_FP32_ACUM_FOR_OUT

#if 0 && defined(MMHA_USE_FP32_ACUM_FOR_OUT)
 // Does not seem to improve the accuracy
 //#define MMHA_USE_FP32_ACUM_FOR_LOGITS
#endif

namespace mmha {

////////////////////////////////////////////////////////////////////////////////////////////////////

//
// We use the following terminology to describe the different dimensions.
//
// B:  Batch size (number of sequences),
// L:  Sequence length,
// D:  Hidden dimension,
// H:  Number of heads,
// Dh: Hidden dimension per head - Dh = D / H.
//
// The different kernels assign a threadblock for B x H pair. The grid has size (1, B, H). We use
// 64, 128 and 256 threads per block.
//
// Each threadblock loads Dh values from Q and its associated bias. The kernels run a loop to
// compute Q * K^T where K is loaded from a cache buffer -- except for the current timestep. The
// cache buffer helps with memory accesses and contains keys with bias.
//
// The layout of the cache buffer for the keys is [B, H, Dh/x, L, x] where x == 8 for FP16 and
// x == 4 for FP32 where the fastest moving dimension (contiguous data) is the rightmost one. The
// values for x are chosen to create chunks of 16 bytes.
//
// The different kernels use 1, 2 or 4 threads per key (THREADS_PER_KEY). The size of the LDGs
// depends on the number of threads per key. Each thread sums Dh / THREADS_PER_KEY elements. At
// the end of each iteration of the Q * K^T loop, we perform a reduction between lanes using an
// HMMA instruction (Tensor Core). Each Q * K^T valuey is stored in shared memory in FP32.
//
// After that loop, a parallel softmax is computed across the different Q * K^T values stored in
// shared memory.
//
// The kernel ends with a loop over the values in V. We use THREADS_PER_VALUE to control how many
// timesteps are computed by loop iteration. As with the keys, the values are read from a cache
// except for the current timestep. The layout of the cache buffer for the values is much simpler
// as it is [B, H, L, Dh].
//

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, int Dh>
struct Qk_vec_ {
};

template<>
struct Qk_vec_<float, 32> {
    using Type = float;
};
template<>
struct Qk_vec_<float, 64> {
    using Type = float2;
};
template<>
struct Qk_vec_<float, 128> {
    using Type = float4;
};
template<>
struct Qk_vec_<float, 256> {
    using Type = float4;
};
template<>
struct Qk_vec_<uint16_t, 32> {
    using Type = uint32_t;
};
template<>
struct Qk_vec_<uint16_t, 64> {
    using Type = uint32_t;
};
template<>
struct Qk_vec_<uint16_t, 128> {
    using Type = uint2;
};
template<>
struct Qk_vec_<uint16_t, 256> {
    using Type = uint4;
};
#ifdef ENABLE_BF16
template<>
struct Qk_vec_<__nv_bfloat16, 32> {
    using Type = __nv_bfloat162;
};
template<>
struct Qk_vec_<__nv_bfloat16, 64> {
    using Type = __nv_bfloat162;
};
template<>
struct Qk_vec_<__nv_bfloat16, 128> {
    using Type = bf16_4_t;
};
template<>
struct Qk_vec_<__nv_bfloat16, 256> {
    using Type = bf16_8_t;
};
#endif  // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, int THREADS_PER_KEY>
struct K_vec_ {
};

template<>
struct K_vec_<float, 4> {
    using Type = float;
};
template<>
struct K_vec_<float, 2> {
    using Type = float2;
};
template<>
struct K_vec_<float, 1> {
    using Type = float4;
};
template<>
struct K_vec_<uint16_t, 4> {
    using Type = uint32_t;
};
template<>
struct K_vec_<uint16_t, 2> {
    using Type = uint2;
};
template<>
struct K_vec_<uint16_t, 1> {
    using Type = uint4;
};
#ifdef ENABLE_BF16
template<>
struct K_vec_<__nv_bfloat16, 4> {
    using Type = __nv_bfloat162;
};
template<>
struct K_vec_<__nv_bfloat16, 2> {
    using Type = bf16_4_t;
};
template<>
struct K_vec_<__nv_bfloat16, 1> {
    using Type = bf16_8_t;
};
#endif  // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, int V_VEC_SIZE>
struct V_vec_ {
};

template<>
struct V_vec_<float, 1> {
    using Type = float;
};
template<>
struct V_vec_<float, 2> {
    using Type = float2;
};
template<>
struct V_vec_<float, 4> {
    using Type = float4;
};
template<>
struct V_vec_<uint16_t, 2> {
    using Type = uint32_t;
};
template<>
struct V_vec_<uint16_t, 4> {
    using Type = uint2;
};
template<>
struct V_vec_<uint16_t, 8> {
    using Type = uint4;
};
#ifdef ENABLE_BF16
template<>
struct V_vec_<__nv_bfloat16, 2> {
    using Type = __nv_bfloat162;
};
template<>
struct V_vec_<__nv_bfloat16, 4> {
    using Type = bf16_4_t;
};
template<>
struct V_vec_<__nv_bfloat16, 8> {
    using Type = bf16_8_t;
};
#endif  // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
template<typename T>
struct Qk_vec_acum_fp32_ {
};

template<>
struct Qk_vec_acum_fp32_<float> {
    using Type = float;
};
template<>
struct Qk_vec_acum_fp32_<float2> {
    using Type = float2;
};
template<>
struct Qk_vec_acum_fp32_<float4> {
    using Type = float4;
};
// template<> struct Qk_vec_acum_fp32_<uint16_t> { using Type = float;        };
template<>
struct Qk_vec_acum_fp32_<uint32_t> {
    using Type = float2;
};
template<>
struct Qk_vec_acum_fp32_<uint2> {
    using Type = Float4_;
};
template<>
struct Qk_vec_acum_fp32_<uint4> {
    using Type = Float8_;
};
template<>
struct Qk_vec_acum_fp32_<__nv_bfloat16> {
    using Type = float;
};
template<>
struct Qk_vec_acum_fp32_<__nv_bfloat162> {
    using Type = float2;
};
template<>
struct Qk_vec_acum_fp32_<bf16_4_t> {
    using Type = Float4_;
};
template<>
struct Qk_vec_acum_fp32_<bf16_8_t> {
    using Type = Float8_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
struct K_vec_acum_fp32_ {
};

template<>
struct K_vec_acum_fp32_<float> {
    using Type = float;
};
template<>
struct K_vec_acum_fp32_<float2> {
    using Type = float2;
};
template<>
struct K_vec_acum_fp32_<float4> {
    using Type = float4;
};
template<>
struct K_vec_acum_fp32_<uint32_t> {
    using Type = float2;
};
template<>
struct K_vec_acum_fp32_<uint2> {
    using Type = Float4_;
};
template<>
struct K_vec_acum_fp32_<uint4> {
    using Type = Float8_;
};
template<>
struct K_vec_acum_fp32_<__nv_bfloat16> {
    using Type = float;
};
template<>
struct K_vec_acum_fp32_<__nv_bfloat162> {
    using Type = float2;
};
template<>
struct K_vec_acum_fp32_<bf16_4_t> {
    using Type = Float4_;
};
template<>
struct K_vec_acum_fp32_<bf16_8_t> {
    using Type = Float8_;
};
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
template<typename T>
struct V_vec_acum_fp32_ {
};

template<>
struct V_vec_acum_fp32_<float> {
    using Type = float;
};
template<>
struct V_vec_acum_fp32_<float2> {
    using Type = float2;
};
template<>
struct V_vec_acum_fp32_<float4> {
    using Type = float4;
};
template<>
struct V_vec_acum_fp32_<uint32_t> {
    using Type = float2;
};
template<>
struct V_vec_acum_fp32_<uint2> {
    using Type = Float4_;
};
template<>
struct V_vec_acum_fp32_<uint4> {
    using Type = Float8_;
};
#ifdef ENABLE_BF16
template<>
struct V_vec_acum_fp32_<__nv_bfloat162> {
    using Type = float2;
};
template<>
struct V_vec_acum_fp32_<bf16_4_t> {
    using Type = Float4_;
};
template<>
struct V_vec_acum_fp32_<bf16_8_t> {
    using Type = Float8_;
};
#endif  // ENABLE_BF16
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////

template<int THREADS_PER_KEY, typename K_vec, int N>
inline __device__ float qk_dot_(const K_vec (&q)[N], const K_vec (&k)[N])
{
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
    using K_vec_acum = typename K_vec_acum_fp32_<K_vec>::Type;
#else
    using K_vec_acum = K_vec;
#endif
    // Compute the parallel products for Q*K^T (treat vector lanes separately).
    K_vec_acum qk_vec = mul<K_vec_acum, K_vec, K_vec>(q[0], k[0]);
#pragma unroll
    for (int ii = 1; ii < N; ++ii) {
        qk_vec = fma(q[ii], k[ii], qk_vec);
    }

    // Finalize the reduction across lanes.
    float qk = sum(qk_vec);
#pragma unroll
    for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2) {
        qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
    }
    return qk;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, int THREADS_PER_KEY>
struct Qk_dot {
    template<typename K_vec, int N>
    static inline __device__ float dot(const K_vec (&q)[N], const K_vec (&k)[N])
    {
        return qk_dot_<THREADS_PER_KEY>(q, k);
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float4 hmma_fp32(const uint2& a, uint32_t b)
{
    float4 c;
    float  zero = 0.f;
    asm volatile("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 \n"
                 "    {%0, %1, %2, %3}, \n"
                 "    {%4, %5}, \n"
                 "    {%6}, \n"
                 "    {%7, %7, %7, %7}; \n"

                 : "=f"(c.x), "=f"(c.y), "=f"(c.z), "=f"(c.w)
                 : "r"(a.x) "r"(a.y), "r"(b), "f"(zero));
    return c;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<int N>
inline __device__ float qk_hmma_dot_(const uint32_t (&q)[N], const uint32_t (&k)[N])
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
    using K_vec_acum = typename K_vec_acum_fp32_<uint32_t>::Type;
#else
    using K_vec_acum = uint32_t;
#endif
    K_vec_acum qk_vec = mul<K_vec_acum, uint32_t, uint32_t>(q[0], k[0]);
#pragma unroll
    for (int ii = 1; ii < N; ++ii) {
        qk_vec = fma(q[ii], k[ii], qk_vec);
    }
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
    uint32_t qk_vec_ = float2_to_half2(qk_vec);
    return hmma_fp32(make_uint2(qk_vec_, 0u), 0x3c003c00u).x;
#else
    return hmma_fp32(make_uint2(qk_vec, 0u), 0x3c003c00u).x;
#endif
#else
    return 0.f;
#endif
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<>
struct Qk_dot<uint16_t, 4> {
    template<int N>
    static inline __device__ float dot(const uint32_t (&q)[N], const uint32_t (&k)[N])
    {
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA_FOR_REDUCTION)
        return qk_hmma_dot_(q, k);
#else
        return qk_dot_<4>(q, k);
#endif  // defined MMHA_USE_HMMA_FOR_REDUCTION
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<int WARPS_PER_BLOCK, int WARP_SIZE = 32>
inline __device__ float block_sum(float* red_smem, float sum)
{

    // Decompose the thread index into warp / lane.
    int warp = threadIdx.x / WARP_SIZE;
    int lane = threadIdx.x % WARP_SIZE;

// Compute the sum per warp.
#pragma unroll
    for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
        sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
    }

    // Warp leaders store the data to shared memory.
    if (lane == 0) {
        red_smem[warp] = sum;
    }

    // Make sure the data is in shared memory.
    __syncthreads();

    // The warps compute the final sums.
    if (lane < WARPS_PER_BLOCK) {
        sum = red_smem[lane];
    }

// Parallel reduction inside the warp.
#pragma unroll
    for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
        sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
    }

    // Broadcast to other threads.
    return __shfl_sync(uint32_t(-1), sum, 0);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(float& dst, float src)
{
    dst = src;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(uint16_t& dst, float src)
{
    dst = float_to_half(src);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(uint32_t& dst, float2 src)
{
    dst = float2_to_half2(src);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ void convert_from_float(__nv_bfloat16& dst, float src)
{
    dst = __float2bfloat16(src);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(__nv_bfloat162& dst, float2 src)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
    dst = __float22bfloat162_rn(src);
#else
    dst   = __floats2bfloat162_rn(src.x, src.y);
#endif
}
#endif  // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(uint2& dst, Float4_ src)
{
    dst.x = float2_to_half2(src.x);
    dst.y = float2_to_half2(src.y);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(uint2& dst, float4 src)
{
    convert_from_float(dst, Float4_{make_float2(src.x, src.y), make_float2(src.z, src.w)});
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(uint4& dst, Float8_ src)
{
    dst.x = float2_to_half2(src.x);
    dst.y = float2_to_half2(src.y);
    dst.z = float2_to_half2(src.z);
    dst.w = float2_to_half2(src.w);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef ENABLE_BF16
inline __device__ void convert_from_float(bf16_4_t& dst, Float4_ src)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
    dst.x = __float22bfloat162_rn(src.x);
    dst.y = __float22bfloat162_rn(src.y);
#else
    dst.x = __floats2bfloat162_rn(src.x.x, src.x.y);
    dst.y = __floats2bfloat162_rn(src.y.x, src.y.y);
#endif
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(bf16_4_t& dst, float4 src)
{
    convert_from_float(dst, Float4_{make_float2(src.x, src.y), make_float2(src.z, src.w)});
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(bf16_8_t& dst, Float8_ src)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
    dst.x = __float22bfloat162_rn(src.x);
    dst.y = __float22bfloat162_rn(src.y);
    dst.z = __float22bfloat162_rn(src.z);
    dst.w = __float22bfloat162_rn(src.w);
#else
    dst.x = __floats2bfloat162_rn(src.x.x, src.x.y);
    dst.y = __floats2bfloat162_rn(src.y.x, src.y.y);
    dst.z = __floats2bfloat162_rn(src.z.x, src.z.y);
    dst.w = __floats2bfloat162_rn(src.w.x, src.w.y);
#endif
}
#endif  // ENABLE_BF16

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(float2& dst, float2 src)
{
    dst = src;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ void convert_from_float(float4& dst, float4 src)
{
    dst = src;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float convert_to_float(float4 u)
{
    return u.x;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float convert_to_float(uint4 u)
{
    float2 tmp = half2_to_float2(u.x);
    return tmp.x;
}

#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float cast_to_float(float u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float2 cast_to_float(float2 u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float4 cast_to_float(float4 u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ Float4_ cast_to_float(Float4_ u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ Float8_ cast_to_float(Float8_ u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float2 cast_to_float(uint32_t u)
{
    return half2_to_float2(u);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ Float4_ cast_to_float(uint2 u)
{
    Float4_ tmp;
    tmp.x = half2_to_float2(u.x);
    tmp.y = half2_to_float2(u.y);
    return tmp;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ Float8_ cast_to_float(uint4 u)
{
    Float8_ tmp;
    tmp.x = half2_to_float2(u.x);
    tmp.y = half2_to_float2(u.y);
    tmp.z = half2_to_float2(u.z);
    tmp.w = half2_to_float2(u.w);
    return tmp;
}

#endif

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float float_from_int8(int8_t u)
{
    return u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float2 float_from_int8(int16_t u)
{
    union {
        int16_t int16;
        int8_t  int8[2];
    };
    int16 = u;
    return make_float2(int8[0], int8[1]);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ float4 float_from_int8(int32_t u)
{
    union {
        int32_t int32;
        int8_t  int8[4];
    };
    int32 = u;
    return make_float4(int8[0], int8[1], int8[2], int8[3]);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// clang-format off
inline __device__ Float8_ float_from_int8(int64_t u)
{
    union {
        int64_t int64;
        int16_t int16[4];
    };
    int64 = u;
    return Float8_ {float_from_int8(int16[0]),
                    float_from_int8(int16[1]),
                    float_from_int8(int16[2]),
                    float_from_int8(int16[3])};
}
// clang-format on

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ int8_t cast_to_int8(float val)
{
    union {
        int8_t  int8[2];
        int16_t int16;
    };
    asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=h"(int16) : "f"(val));
    return int8[0];
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ int32_t cast_to_int8(float4 val)
{
    union {
        int8_t  int8[4];
        int32_t int32;
    };
    int8[0] = cast_to_int8(val.x);
    int8[1] = cast_to_int8(val.y);
    int8[2] = cast_to_int8(val.z);
    int8[3] = cast_to_int8(val.w);
    return int32;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ int64_t cast_to_int8(Float8_ val)
{
    union {
        int8_t  int8[8];
        int64_t int64;
    };
    int8[0] = cast_to_int8(val.x.x);
    int8[1] = cast_to_int8(val.x.y);
    int8[2] = cast_to_int8(val.y.x);
    int8[3] = cast_to_int8(val.y.y);
    int8[4] = cast_to_int8(val.z.x);
    int8[5] = cast_to_int8(val.z.y);
    int8[6] = cast_to_int8(val.w.x);
    int8[7] = cast_to_int8(val.w.y);
    return int64;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
inline __device__ __host__ T div_up(T m, T n)
{
    return (m + n - 1) / n;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, bool DO_CROSS_ATTENTION>
inline size_t smem_size_in_bytes(const Multihead_attention_params<T, DO_CROSS_ATTENTION>& params,
                                 int                                                      threads_per_value,
                                 int                                                      threads_per_block)
{
    // The amount of shared memory needed to store the Q*K^T values in float.
    const int max_timesteps = min(params.timestep, params.memory_max_len);
    size_t qk_sz = (DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 16 : div_up(max_timesteps + 1, 4) * 16;

    // The extra memory needed if we are not using floats for the final logits.
    size_t logits_sz = 0;
#ifndef MMHA_USE_FP32_ACUM_FOR_LOGITS
    if (sizeof(T) != 4) {
        // TDOD
        logits_sz = (DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 4 * sizeof(T) :
                                           div_up(max_timesteps + 1, 4) * 4 * sizeof(T);
    }
#endif

    // The total size needed during softmax.
    size_t softmax_sz = qk_sz + logits_sz;

    // The number of partial rows to reduce in the final reduction.
    int rows_per_red = threads_per_block / threads_per_value;
    // The amount of storage needed to finalize the outputs.
    size_t red_sz = rows_per_red * params.hidden_size_per_head * sizeof(T) / 2;

    size_t transpose_rotary_size = 0;
    if (params.rotary_embedding_dim > 0 && params.neox_rotary_style) {
        transpose_rotary_size = 2 * params.rotary_embedding_dim * sizeof(T);
    }

    // The max.
    return max(max(softmax_sz, red_sz), transpose_rotary_size);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

inline __device__ constexpr uint32_t shfl_mask(int threads)
{
    return threads == 32 ? uint32_t(-1) : (1u << threads) - 1u;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<
    // The type of the inputs. Supported types: float and half.
    typename T,
    // The hidden dimension per head.
    int Dh,
    int Dh_MAX,
    // The number of threads per key.
    int THREADS_PER_KEY,
    // The number of threads per value.
    int THREADS_PER_VALUE,
    // The number of threads in a threadblock.
    int  THREADS_PER_BLOCK,
    bool DO_CROSS_ATTENTION>
__global__ void masked_multihead_attention_kernel(Multihead_attention_params<T, DO_CROSS_ATTENTION> params)
{

    // Make sure the hidden dimension per head is a multiple of the number of threads per key.
    static_assert(Dh_MAX % THREADS_PER_KEY == 0, "");
    // Make sure the hidden dimension per head is a multiple of the number of threads per value.
    static_assert(Dh_MAX % THREADS_PER_VALUE == 0, "");

    // The size of a warp.
    constexpr int WARP_SIZE = 32;
    // The number of warps in a threadblock.
    constexpr int WARPS_PER_BLOCK = THREADS_PER_BLOCK / WARP_SIZE;

    // Use smem_size_in_bytes (above) to determine the amount of shared memory.
    extern __shared__ char smem_[];

    // The shared memory for the Q*K^T values and partial logits in softmax.
    float* qk_smem = reinterpret_cast<float*>(smem_);

    // The shared memory for the logits. For FP32, that's the same buffer as qk_smem.
    char* logits_smem_ = smem_;
#ifndef MMHA_USE_FP32_ACUM_FOR_LOGITS
    if (sizeof(T) != 4) {
        // TODO - change to tlength
        const int max_timesteps = min(params.timestep, params.memory_max_len);
        logits_smem_ +=
            (DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 16 : div_up(max_timesteps + 1, 4) * 16;
    }
    T* logits_smem = reinterpret_cast<T*>(logits_smem_);
#else
    float* logits_smem = reinterpret_cast<float*>(logits_smem_);
#endif

    // The shared memory to do the final reduction for the output values. Reuse qk_smem.
    T* out_smem = reinterpret_cast<T*>(smem_);

    // The shared memory buffers for the block-wide reductions. One for max, one for sum.
    __shared__ float red_smem[WARPS_PER_BLOCK * 2];

    // A vector of Q or K elements for the current timestep.
    using Qk_vec = typename Qk_vec_<T, Dh_MAX>::Type;

    // Use alignment for safely casting the shared buffers as Qk_vec.
    // Shared memory to store Q inputs.
    __shared__ __align__(sizeof(Qk_vec)) T q_smem[Dh_MAX];

    // This is one of the reasons we should have a separate kernel for cross attention
    __shared__ __align__(sizeof(Qk_vec)) T bias_smem[DO_CROSS_ATTENTION ? Dh_MAX : 1];

    // A vector of Q or K elements for the current timestep.
    using Qk_vec = typename Qk_vec_<T, Dh_MAX>::Type;
    // The number of elements per vector.
    constexpr int QK_VEC_SIZE = sizeof(Qk_vec) / sizeof(T);
    // Make sure the hidden size per head is a multiple of the vector size.
    static_assert(Dh_MAX % QK_VEC_SIZE == 0, "");
    // We will use block wide reduction if needed
    // static_assert(Dh_MAX / QK_VEC_SIZE <= WARP_SIZE, "");
    // The number of vectors per warp.
    constexpr int QK_VECS_PER_WARP = Dh_MAX / QK_VEC_SIZE;

    // The layout of the cache is [B, H, Dh/x, L, x] with x == 4/8 for FP32/FP16. Since each thread
    // owns x elements, we have to decompose the linear index into chunks of x values and the posi-
    // tion of the thread in that chunk.

    // The number of elements in a chunk of 16B (that's the x in the above formula).
    constexpr int QK_ELTS_IN_16B = 16 / sizeof(T);
    // The number of K vectors in 16B.
    constexpr int QK_VECS_IN_16B = 16 / sizeof(Qk_vec);

    // The batch/beam idx
    const int bi = blockIdx.y;
    if (params.finished != nullptr && params.finished[bi] == true) {
        return;
    }
    // The beam idx
    const int beami = bi % params.beam_width;
    // The "beam-aware" batch idx
    const int bbi = bi / params.beam_width;
    // The head.
    // const int hi = blockIdx.x;
    const int hi = params.nnz_head_idx == nullptr ? blockIdx.x : params.nnz_head_idx[blockIdx.x];
    const int hi_kv = hi / params.num_heads_q_kv_ratio;
    // Combine the batch and the head indices.
    const int bhi = bi * params.num_heads + hi;
    const int bhi_kv = bi * params.num_heads_kv + hi_kv;
    // Combine the "beam-aware" batch idx and the head indices.
    const int bbhi = bbi * params.beam_width * params.num_heads_kv + hi_kv;
    // The thread in the block.
    const int tidx = threadIdx.x;

    const bool handle_kv = !DO_CROSS_ATTENTION || (DO_CROSS_ATTENTION && params.timestep == 0);

    // While doing the product Q*K^T for the different keys we track the max.
    float qk_max = -FLT_MAX;

    float qk = 0.0F;

    int q_base_offset = (params.stride_q == 0) ? bhi * Dh : bi * params.stride_q + hi * Dh;
    int k_base_offset = (params.stride_k == 0) ? bhi_kv * Dh : bi * params.stride_k + hi_kv * Dh;
    int v_base_offset = (params.stride_v == 0) ? bhi_kv * Dh : bi * params.stride_v + hi_kv * Dh;

    const size_t bi_seq_len_offset = bi * params.memory_max_len;

    // int tlength = (DO_CROSS_ATTENTION)? params.memory_length_per_sample[bi] - 1 : params.timestep;
    int       tlength      = (DO_CROSS_ATTENTION) ? params.memory_length_per_sample[bi] - 1 :
                             (params.length_per_sample == nullptr) ?
                                                    params.timestep :
                                                    params.length_per_sample[bi] + params.max_prefix_prompt_length;
    const int first_step   = max(0, tlength + 1 - params.memory_max_len);
    const int tlength_circ = tlength % params.memory_max_len;

    // First QK_VECS_PER_WARP load Q and K + the bias values for the current timestep.
    const bool is_masked = tidx >= QK_VECS_PER_WARP;

    // The offset in the Q and K buffer also accounts for the batch.
    int q_offset = q_base_offset + tidx * QK_VEC_SIZE;
    int k_offset = k_base_offset + tidx * QK_VEC_SIZE;
    // The offset in the bias buffer.
    int q_bias_offset = hi * Dh + tidx * QK_VEC_SIZE;
    int k_bias_offset = hi_kv * Dh + tidx * QK_VEC_SIZE;

    const bool do_ia3      = handle_kv && params.ia3_tasks != nullptr;
    const int  ia3_task_id = do_ia3 ? params.ia3_tasks[bbi] : 0;

    // Trigger the loads from the Q and K buffers.
    Qk_vec q;
    zero(q);
    if (!is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh)) {
        if (params.int8_mode == 2) {
            using Packed_Int8_t  = typename packed_type<int8_t, num_elems<Qk_vec>::value>::type;
            using Packed_Float_t = typename packed_type<float, num_elems<Qk_vec>::value>::type;
            const auto q_scaling = params.qkv_scale_out[0];
            const auto q_quant =
                *reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.q)[q_offset]);

            convert_from_float(q, mul<Packed_Float_t, float>(q_scaling, float_from_int8(q_quant)));
        }
        else {
            q = *reinterpret_cast<const Qk_vec*>(&params.q[q_offset]);
        }
    }

    Qk_vec k;
    zero(k);
    if (DO_CROSS_ATTENTION) {
        // The 16B chunk written by the thread.
        int co = tidx / QK_VECS_IN_16B;
        // The position of the thread in that 16B chunk.
        int ci = tidx % QK_VECS_IN_16B * QK_VEC_SIZE;

        // Two chunks are separated by L * x elements. A thread write QK_VEC_SIZE elements.
        int offset = bhi_kv * params.memory_max_len * Dh + co * params.memory_max_len * QK_ELTS_IN_16B +
                     // params.timestep*QK_ELTS_IN_16B +
                     tlength * QK_ELTS_IN_16B + ci;
        k = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) ?
                *reinterpret_cast<const Qk_vec*>(&params.k_cache[offset]) :
                k;
    }
    else {
        if (!is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh)) {
            if (params.int8_mode == 2) {
                using Packed_Int8_t  = typename packed_type<int8_t, num_elems<Qk_vec>::value>::type;
                using Packed_Float_t = typename packed_type<float, num_elems<Qk_vec>::value>::type;
                const auto k_scaling = params.qkv_scale_out[1];
                const auto k_quant =
                    *reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.k)[k_offset]);

                convert_from_float(k, mul<Packed_Float_t, float>(k_scaling, float_from_int8(k_quant)));
            }
            else {
                k = *reinterpret_cast<const Qk_vec*>(&params.k[k_offset]);
            }
        }
    }

    // Trigger the loads from the Q and K bias buffers.
    Qk_vec q_bias;
    zero(q_bias);
    q_bias = (!is_masked && Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) && params.q_bias != nullptr ?
                 *reinterpret_cast<const Qk_vec*>(&params.q_bias[q_bias_offset]) :
                 q_bias;

    Qk_vec k_bias;
    zero(k_bias);
    if (handle_kv) {
        k_bias = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) && params.k_bias != nullptr ?
                     *reinterpret_cast<const Qk_vec*>(&params.k_bias[k_bias_offset]) :
                     k_bias;
    }

    // Computes the Q/K values with bias.
    q = add(q, q_bias);
    if (handle_kv) {
        k = add(k, k_bias);
    }
    if (do_ia3 && !is_masked) {
        k = mul<Qk_vec, Qk_vec, Qk_vec>(
            k,
            *reinterpret_cast<const Qk_vec*>(
                &params.ia3_key_weights[(ia3_task_id * params.num_heads + hi) * Dh + tidx * QK_VEC_SIZE]));
    }

    // Padded len
    const int padd_len = (params.total_padding_tokens == nullptr) ? 0 : params.total_padding_tokens[bi];
    if (params.rotary_embedding_dim > 0 && !params.neox_rotary_style) {
        if (handle_kv) {
            if (params.rotary_cos == nullptr) {
                apply_rotary_embedding(q, k, tidx, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
            } else {
                apply_rotary_embedding(q, k, tidx, params.rotary_embedding_dim, tlength - padd_len,
                                       params.rotary_cos + bi * params.rotary_embedding_dim / 2,
                                       params.rotary_sin + bi * params.rotary_embedding_dim / 2);
            }
        }
        else {
            if (params.rotary_cos == nullptr) {
                apply_rotary_embedding(q, tidx, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
            } else {
                apply_rotary_embedding(q, tidx, params.rotary_embedding_dim, tlength - padd_len,
                                       params.rotary_cos + bi * params.rotary_embedding_dim / 2,
                                       params.rotary_sin + bi * params.rotary_embedding_dim / 2);
            }
        }
    }
    else if (params.rotary_embedding_dim > 0 && params.neox_rotary_style) {
        const bool do_rotary = !is_masked && QK_VEC_SIZE * tidx < params.rotary_embedding_dim;

        T* q_smem = reinterpret_cast<T*>(smem_);
        T* k_smem = q_smem + params.rotary_embedding_dim;

        const int half_rotary_dim = params.rotary_embedding_dim / 2;
        const int half_idx        = (tidx * QK_VEC_SIZE) / half_rotary_dim;
        const int intra_half_idx  = (tidx * QK_VEC_SIZE) % half_rotary_dim;
        const int smem_pitch      = half_rotary_dim;  // TODO: adjust for bank conflicts

        assert(half_rotary_dim % QK_VEC_SIZE == 0);

        if (do_rotary) {
            *reinterpret_cast<Qk_vec*>(q_smem + half_idx * smem_pitch + intra_half_idx) = q;

            if (handle_kv) {
                *reinterpret_cast<Qk_vec*>(k_smem + half_idx * smem_pitch + intra_half_idx) = k;
            }
        }

        __syncthreads();

        const int     transpose_idx = half_idx * (half_rotary_dim / 2) + intra_half_idx / 2;
        constexpr int tidx_factor   = (QK_VEC_SIZE > 1) ? QK_VEC_SIZE / 2 : 1;
        if (do_rotary) {
            mmha::vec_from_smem_transpose(q, q_smem, transpose_idx, smem_pitch);

            if (handle_kv) {
                mmha::vec_from_smem_transpose(k, k_smem, transpose_idx, smem_pitch);

                if (params.rotary_cos == nullptr) {
                    mmha::apply_rotary_embedding(
                        q, k, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
                } else {
                    mmha::apply_rotary_embedding(
                        q, k, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength - padd_len,
                        params.rotary_cos + bi * params.rotary_embedding_dim / 2,
                        params.rotary_sin + bi * params.rotary_embedding_dim / 2);
                }

                mmha::write_smem_transpose(k, k_smem, transpose_idx, smem_pitch);
            }
            else {
                if (params.rotary_cos == nullptr) {
                    mmha::apply_rotary_embedding(
                        q, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength, params.rotary_base);
                } else {
                    mmha::apply_rotary_embedding(
                        q, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength,
                        params.rotary_cos + bi * params.rotary_embedding_dim / 2,
                        params.rotary_sin + bi * params.rotary_embedding_dim / 2);
                }
            }
            mmha::write_smem_transpose(q, q_smem, transpose_idx, smem_pitch);
        }

        __syncthreads();

        if (do_rotary) {
            q = *reinterpret_cast<Qk_vec*>(q_smem + half_idx * smem_pitch + intra_half_idx);
            if (handle_kv) {
                k = *reinterpret_cast<Qk_vec*>(k_smem + half_idx * smem_pitch + intra_half_idx);
            }
        }

        __syncthreads();
    }

    if (!is_masked) {
        // Store the Q values to shared memory.
        *reinterpret_cast<Qk_vec*>(&q_smem[tidx * QK_VEC_SIZE]) = q;

        // Store Dh values of k_bias into smem, since will need to add later
        // if params.timestep == 0
        if (DO_CROSS_ATTENTION && params.timestep == 0) {
            *reinterpret_cast<Qk_vec*>(&bias_smem[tidx * QK_VEC_SIZE]) = k_bias;
        }

        // Write the K values to the global memory cache.
        //
        // NOTE: The stores are uncoalesced as we have multiple chunks of 16B spread across the memory
        // system. We designed it this way as it allows much better memory loads (and there are many
        // more loads) + the stores are really "write and forget" since we won't need the ack before
        // the end of the kernel. There's plenty of time for the transactions to complete.

        // The 16B chunk written by the thread.
        int co = tidx / QK_VECS_IN_16B;
        // The position of the thread in that 16B chunk.
        int ci = tidx % QK_VECS_IN_16B * QK_VEC_SIZE;

        // Two chunks are separated by L * x elements. A thread write QK_VEC_SIZE elements.
        int offset = bhi_kv * params.memory_max_len * Dh + co * params.memory_max_len * QK_ELTS_IN_16B +
                     // params.timestep*QK_ELTS_IN_16B +
                     tlength_circ * QK_ELTS_IN_16B + ci;

        if (handle_kv && hi % params.num_heads_q_kv_ratio == 0) {
            // Trigger the stores to global memory.
            if (Dh == Dh_MAX || co < Dh / QK_ELTS_IN_16B) {
                *reinterpret_cast<Qk_vec*>(&params.k_cache[offset]) = k;
            }
        }

        // Compute \sum_i Q[i] * K^T[i] for the current timestep.
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
        using Qk_vec_acum = typename Qk_vec_acum_fp32_<Qk_vec>::Type;
#else
        using Qk_vec_acum = Qk_vec;
#endif
        qk = dot<Qk_vec_acum, Qk_vec>(q, k);
        if (QK_VECS_PER_WARP <= WARP_SIZE) {
#pragma unroll
            for (int mask = QK_VECS_PER_WARP / 2; mask >= 1; mask /= 2) {
                qk += __shfl_xor_sync(shfl_mask(QK_VECS_PER_WARP), qk, mask);
            }
        }
    }

    if (QK_VECS_PER_WARP > WARP_SIZE) {
        constexpr int WARPS_PER_RED = (QK_VECS_PER_WARP + WARP_SIZE - 1) / WARP_SIZE;
        qk                          = block_sum<WARPS_PER_RED>(&red_smem[WARPS_PER_RED], qk);
    }

    // Store that value in shared memory. Keep the Q*K^T value in register for softmax.
    if (tidx == 0) {
        // Normalize qk.
        qk *= params.inv_sqrt_dh;
        if (params.relative_attention_bias != nullptr) {
            qk = add(qk,
                     params.relative_attention_bias[hi * params.relative_attention_bias_stride
                                                        * params.relative_attention_bias_stride
                                                    + (tlength - padd_len) * params.relative_attention_bias_stride
                                                    + (tlength - padd_len)]);
        }
        // We don't need to apply the linear position bias here since qi - ki = 0 yields the position bias 0.

        qk_max                        = qk;
        qk_smem[tlength - first_step] = qk;
        // qk_smem[params.timestep] = qk;
    }

    // Make sure the data is in shared memory.
    __syncthreads();

    // The type of queries and keys for the math in the Q*K^T product.
    using K_vec = typename K_vec_<T, THREADS_PER_KEY>::Type;
    // The number of elements per vector.
    constexpr int K_VEC_SIZE = sizeof(K_vec) / sizeof(T);
    // Make sure the hidden size per head is a multiple of the vector size.
    static_assert(Dh_MAX % K_VEC_SIZE == 0, "");
    // The number of elements per thread.
    constexpr int K_ELTS_PER_THREAD = Dh_MAX / THREADS_PER_KEY;
    // The number of vectors per thread.
    constexpr int K_VECS_PER_THREAD = K_ELTS_PER_THREAD / K_VEC_SIZE;

    // The position the first key loaded by each thread from the cache buffer (for this B * H).
    int ko = tidx / THREADS_PER_KEY;
    // The position of the thread in the chunk of keys.
    int ki = tidx % THREADS_PER_KEY * K_VEC_SIZE;

    static_assert(Dh_MAX == THREADS_PER_KEY * K_VEC_SIZE * K_VECS_PER_THREAD);

    // Load the Q values from shared memory. The values are reused during the loop on K.
    K_vec q_vec[K_VECS_PER_THREAD];
#pragma unroll
    for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
        q_vec[ii] = *reinterpret_cast<const K_vec*>(&q_smem[ki + ii * THREADS_PER_KEY * K_VEC_SIZE]);
    }

    K_vec k_bias_vec[DO_CROSS_ATTENTION ? K_VECS_PER_THREAD : 1];
    if (DO_CROSS_ATTENTION && params.timestep == 0) {
#pragma unroll
        for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
            k_bias_vec[ii] = *reinterpret_cast<const K_vec*>(&bias_smem[ki + ii * THREADS_PER_KEY * K_VEC_SIZE]);
        }
    }

    // The number of timesteps loaded per iteration.
    constexpr int K_PER_ITER = THREADS_PER_BLOCK / THREADS_PER_KEY;
    // The number of keys per warp.
    constexpr int K_PER_WARP = WARP_SIZE / THREADS_PER_KEY;

    // The base pointer for the key in the cache buffer.
    T* k_cache = &params.k_cache[bhi_kv * params.memory_max_len * Dh + ki];
    // Base pointer for the beam's batch, before offsetting with indirection buffer
    T* k_cache_batch = &params.k_cache[bbhi * params.memory_max_len * Dh + ki];

    // Pick a number of keys to make sure all the threads of a warp enter (due to shfl_sync).
    // int ti_end = div_up(params.timestep, K_PER_WARP) * K_PER_WARP;
    int ti_end = div_up(tlength - first_step, K_PER_WARP) * K_PER_WARP + first_step;

    // prefix prompt length if has
    const int prefix_prompt_length = (params.prefix_prompt_lengths == nullptr) ? 0 : params.prefix_prompt_lengths[bi];

    // Iterate over the keys/timesteps to compute the various (Q*K^T)_{ti} values.
    const bool has_beams    = params.cache_indir != nullptr;
    const int* beam_indices = has_beams ? &params.cache_indir[bi_seq_len_offset] : nullptr;

    for (int ti = first_step + ko; ti < ti_end; ti += K_PER_ITER) {
        const int ti_circ = ti % params.memory_max_len;

        // The keys loaded from the key cache.
        K_vec k[K_VECS_PER_THREAD];
        K_vec k_vec_zero;
        zero(k_vec_zero);
#pragma unroll
        for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
            int jj = ii * params.memory_max_len + ti_circ;
            // if( ti < params.timestep ) {
            const bool within_bounds = (Dh == Dh_MAX || jj * QK_ELTS_IN_16B < Dh * params.memory_max_len);
            if (ti < tlength) {
                if (!within_bounds) {
                    k[ii] = k_vec_zero;
                }
                else {
                    if (has_beams) {
                        const int beam_offset = beam_indices[ti_circ] * params.num_heads * params.memory_max_len * Dh;
                        k[ii] = *reinterpret_cast<const K_vec*>(&k_cache_batch[beam_offset + jj * QK_ELTS_IN_16B]);
                    }
                    else {
                        k[ii] = *reinterpret_cast<const K_vec*>(&k_cache_batch[jj * QK_ELTS_IN_16B]);
                    }
                }
                // add bias and update k_cache
                if (DO_CROSS_ATTENTION && params.timestep == 0) {
                    k[ii] = add(k[ii], k_bias_vec[ii]);

                    if (do_ia3) {
                        k[ii] = mul<K_vec, K_vec, K_vec>(
                            k[ii],
                            *reinterpret_cast<const K_vec*>(
                                &params.ia3_key_weights[(ia3_task_id * params.num_heads + hi) * Dh + ki
                                                        + ii * THREADS_PER_KEY * K_VEC_SIZE]));
                    }

                    if (Dh == Dh_MAX || jj * QK_ELTS_IN_16B < Dh * params.memory_max_len) {
                        *reinterpret_cast<K_vec*>(&k_cache[jj * QK_ELTS_IN_16B]) = k[ii];
                    }
                }
            }
        }

        // Perform the dot product and normalize qk.
        //
        // WARNING: ALL THE THREADS OF A WARP MUST ENTER!!!
        float qk      = Qk_dot<T, THREADS_PER_KEY>::dot(q_vec, k) * params.inv_sqrt_dh;
        bool  is_mask = (params.masked_tokens != nullptr) && params.masked_tokens[bi_seq_len_offset + ti];

        // Store the product to shared memory. There's one qk value per timestep. Update the max.
        // if( ti < params.timestep && tidx % THREADS_PER_KEY == 0 ) {
        if (ti < tlength && tidx % THREADS_PER_KEY == 0) {
            if (params.relative_attention_bias != nullptr) {
                qk = add(qk,
                         params.relative_attention_bias[hi * params.relative_attention_bias_stride
                                                            * params.relative_attention_bias_stride
                                                        + tlength * params.relative_attention_bias_stride + ti]);
            }
            if (params.linear_bias_slopes != nullptr) {
                // Apply the linear position bias: (ki - qi) * slope[hi].
                // The padding token locates between the input context and the generated tokens.
                // We need to remove the number of padding tokens in the distance computation.
                //   ti   : 0 1 2 3 4 5 6 7 8 9(tlength)
                //   token: i i i i p p p o o o where i=input, p=pad, o=output.
                // e.g. ti = 2, dist = (9 - 3) - 2 = 4.
                int   max_context_length = params.max_prefix_prompt_length + params.max_input_length;
                float dist               = (ti < max_context_length ? ti + padd_len : ti) - tlength;

                qk += mul<float, T, float>(params.linear_bias_slopes[hi], dist);
            }
            qk_max                   = is_mask ? qk_max : fmaxf(qk_max, qk);
            qk_smem[ti - first_step] = qk;
        }
    }

// Perform the final reduction to compute the max inside each warp.
//
// NOTE: In a group of THREADS_PER_KEY threads, the leader already has the max value for the
// group so it's not needed to run the reduction inside the group (again).
#pragma unroll
    for (int mask = WARP_SIZE / 2; mask >= THREADS_PER_KEY; mask /= 2) {
        qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
    }

    // Decompose the thread index into warp and lane.
    const int warp = tidx / WARP_SIZE;
    const int lane = tidx % WARP_SIZE;

    // The warp leader writes the max to shared memory.
    if (lane == 0) {
        red_smem[warp] = qk_max;
    }

    // Make sure the products are in shared memory.
    __syncthreads();

    // The warps finalize the reduction.
    qk_max = lane < WARPS_PER_BLOCK ? red_smem[lane] : -FLT_MAX;
#pragma unroll
    for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
        qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
    }

    // Broadcast to all the threads in the warp.
    qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);

    // Compute the logits and start the sum.
    float sum = 0.f;
    // for( int ti = tidx; ti <= params.timestep; ti += THREADS_PER_BLOCK ) {
    for (int ti = first_step + tidx; ti <= tlength; ti += THREADS_PER_BLOCK) {
        bool  is_mask = (params.masked_tokens != nullptr) && params.masked_tokens[bi_seq_len_offset + ti];
        float logit   = is_mask ? 0.f : __expf(qk_smem[ti - first_step] - qk_max);
        sum += logit;
        qk_smem[ti - first_step] = logit;
    }

    // Compute the sum.
    sum = block_sum<WARPS_PER_BLOCK>(&red_smem[WARPS_PER_BLOCK], sum);

    // Normalize the logits.
    float inv_sum = __fdividef(1.f, sum + 1.e-6f);
    // for( int ti = tidx; ti <= params.timestep; ti += THREADS_PER_BLOCK ) {
    const size_t cross_attention_out_offset =
        params.is_return_cross_attentions ?
            bhi * params.max_decoder_seq_len * params.memory_max_len + params.timestep * params.memory_max_len :
            0;
    for (int ti = first_step + tidx; ti <= tlength; ti += THREADS_PER_BLOCK) {
        float logit = qk_smem[ti - first_step] * inv_sum;
        if (params.is_return_cross_attentions) {
            params.cross_attention_out[cross_attention_out_offset + ti] = logit;
        }
        convert_from_float(logits_smem[ti - first_step], logit);
    }

    // Put Values part below so we leverage __syncthreads
    // from the previous step

    // The number of elements per vector.
    constexpr int V_VEC_SIZE = Dh_MAX / THREADS_PER_VALUE;
    // A vector of V elements for the current timestep.
    using V_vec = typename V_vec_<T, V_VEC_SIZE>::Type;

    // The value computed by this thread.
    int vo = tidx / THREADS_PER_VALUE;
    // The hidden dimensions computed by this particular thread.
    int vi = tidx % THREADS_PER_VALUE * V_VEC_SIZE;

    // The base pointer for the value in the cache buffer.
    T* v_cache = &params.v_cache[bhi_kv * params.memory_max_len * Dh + vi];
    // Base pointer for the beam's batch, before offsetting with indirection buffer
    T* v_cache_batch = &params.v_cache[bbhi * params.memory_max_len * Dh + vi];

    // The number of values processed per iteration of the loop.
    constexpr int V_PER_ITER = THREADS_PER_BLOCK / THREADS_PER_VALUE;

    // One group of threads computes the product(s) for the current timestep.
    V_vec v_bias;
    zero(v_bias);
    // if( vo == params.timestep % V_PER_ITER ) {
    if (Dh == Dh_MAX || vi < Dh) {
        if (handle_kv) {
            if (vo == tlength % V_PER_ITER) {
                // Trigger the loads from the V bias buffer.
                if (params.v_bias != nullptr) {
                    v_bias = *reinterpret_cast<const V_vec*>(&params.v_bias[hi_kv * Dh + vi]);
                }
                if (DO_CROSS_ATTENTION) {
                    *reinterpret_cast<V_vec*>(&bias_smem[vi]) = v_bias;
                }
            }
        }
    }

    // From previous, before values, step
    // Also make sure the logits are in shared memory.
    __syncthreads();

    // Values continued
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
    using V_vec_acum = typename V_vec_acum_fp32_<V_vec>::Type;
#else
    using V_vec_acum = V_vec;
#endif
    // The partial outputs computed by each thread.
    V_vec_acum out;
    zero(out);

    // Loop over the timesteps to compute the partial outputs.
    // for( int ti = vo; ti < params.timestep; ti += V_PER_ITER ) {
    if (Dh == Dh_MAX || vi < Dh) {
        for (int ti = first_step + vo; ti < tlength; ti += V_PER_ITER) {
            const int ti_circ = ti % params.memory_max_len;

            // Fetch offset based on cache_indir when beam sampling
            const int beam_src = (params.cache_indir != nullptr) ? params.cache_indir[bi_seq_len_offset + ti_circ] : 0;
            const int beam_offset = beam_src * params.num_heads * params.memory_max_len * Dh;
            // Load the values from the cache.
            V_vec v = *reinterpret_cast<const V_vec*>(&v_cache_batch[beam_offset + ti_circ * Dh]);
            if (DO_CROSS_ATTENTION && params.timestep == 0) {
                v = add(v, *reinterpret_cast<V_vec*>(&bias_smem[vi]));
                if (do_ia3) {
                    v = mul<V_vec, V_vec, V_vec>(
                        v,
                        *reinterpret_cast<const V_vec*>(
                            &params.ia3_value_weights[(ia3_task_id * params.num_heads + hi) * Dh + vi]));
                }
                *reinterpret_cast<V_vec*>(&v_cache[ti * Dh]) = v;
            }
            // Load the logits from shared memory.
#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)
            float logit = logits_smem[ti - first_step];
            out         = fma(logit, cast_to_float(v), out);
#else
            T logit = logits_smem[ti - first_step];

            // Update the partial sums.
            out = fma(logit, v, out);
#endif
        }
    }

    // One group of threads computes the product(s) for the current timestep.
    // if( vo == params.timestep % V_PER_ITER ) {
    if (vo == tlength % V_PER_ITER && (Dh == Dh_MAX || vi < Dh)) {

        V_vec v;
        if (DO_CROSS_ATTENTION) {
            v = *reinterpret_cast<const V_vec*>(&v_cache[tlength * Dh]);
        }
        else {
            // Trigger the loads from the V buffer.
            const auto v_offset = v_base_offset + vi;
            if (params.int8_mode == 2) {
                using Packed_Int8_t  = typename packed_type<int8_t, num_elems<V_vec>::value>::type;
                using Packed_Float_t = typename packed_type<float, num_elems<V_vec>::value>::type;
                const auto v_scaling = params.qkv_scale_out[2];
                const auto v_quant =
                    *reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.v)[v_offset]);

                convert_from_float(v, mul<Packed_Float_t, float>(v_scaling, float_from_int8(v_quant)));
            }
            else {
                v = *reinterpret_cast<const V_vec*>(&params.v[v_offset]);
            }
            // Trigger the loads from the V bias buffer.
            // V_vec v_bias = *reinterpret_cast<const V_vec*>(&params.v_bias[hi*Dh + vi]);
        }

        // Compute the V values with bias.
        if (handle_kv) {
            v = add(v, v_bias);

            if (do_ia3) {
                v = mul<V_vec, V_vec, V_vec>(
                    v,
                    *reinterpret_cast<const V_vec*>(
                        &params.ia3_value_weights[(ia3_task_id * params.num_heads + hi) * Dh + vi]));
            }

            // Store the values with bias back to global memory in the cache for V.
            if (hi % params.num_heads_q_kv_ratio == 0) {
                //*reinterpret_cast<V_vec*>(&v_cache[params.timestep*Dh]) = v;
                *reinterpret_cast<V_vec*>(&v_cache[tlength_circ * Dh]) = v;
            }
        }

        // Initialize the output value with the current timestep.
#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)
        // out = fma(logits_smem[params.timestep], cast_to_float(v), out);
        out = fma(logits_smem[tlength - first_step], cast_to_float(v), out);
#else
        // out = fma(logits_smem[params.timestep], v, out);
        out = fma(logits_smem[tlength - first_step], v, out);
#endif
    }

    // Make sure we can start writing to shared memory.
    __syncthreads();

    // Run the final reduction amongst the different groups computing different partial outputs.
    if (Dh == Dh_MAX || vi < Dh) {
#pragma unroll
        for (int active_groups = V_PER_ITER; active_groups >= 2; active_groups /= 2) {

            // The midpoint in the number of active groups.
            int midpoint = active_groups / 2;

            // The upper part of active threads store to shared memory.
            if (vo >= midpoint && vo < active_groups && (Dh == Dh_MAX || vi < Dh)) {
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
                convert_from_float(*reinterpret_cast<V_vec*>(&out_smem[(vo - midpoint) * Dh + vi]), out);
#else
                *reinterpret_cast<V_vec*>(&out_smem[(vo - midpoint) * Dh + vi]) = out;
#endif
            }
            __syncthreads();

            // The bottom warps update their values.
            if (vo < midpoint && (Dh == Dh_MAX || vi < Dh)) {
                out = add(*reinterpret_cast<const V_vec*>(&out_smem[vo * Dh + vi]), out);
            }
            __syncthreads();
        }
    }

    // Output the final values.
    if (vo == 0 && (Dh == Dh_MAX || vi < Dh)) {
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
        if (params.int8_mode == 2) {
            using Packed_Int8_t = typename packed_type<int8_t, num_elems<V_vec_acum>::value>::type;
            out                 = mul<V_vec_acum, float>(*params.attention_out_scale, out);
            *reinterpret_cast<Packed_Int8_t*>(&(reinterpret_cast<int8_t*>(params.out)[bhi * Dh + vi])) =
                cast_to_int8(out);
        }
        else {
            convert_from_float(*reinterpret_cast<V_vec*>(&params.out[bhi * Dh + vi]), out);
        }
#else
        // TODO: support int8_mode?
        *reinterpret_cast<V_vec*>(&params.out[bhi * Dh + vi]) = out;
#endif
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

}  // namespace mmha

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T, int Dh, int Dh_MAX, typename KERNEL_PARAMS_TYPE>
void mmha_launch_kernel(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream);