--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit library_name: peft --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** thepinkdrummer ## Direct Use ### Login from huggingface_hub import notebook_login notebook_login() ### Import the Models from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer ##### Load the base model and tokenizer base_model_name = "unsloth/meta-llama-3.1-8b-bnb-4bit" base_model = AutoModelForCausalLM.from_pretrained(base_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) ##### Load PEFT configuration and the fine-tuned model peft_model_name = "thepinkdrummer/maayavi" config = PeftConfig.from_pretrained(peft_model_name) model = PeftModel.from_pretrained(base_model, peft_model_name) ### Run Chat Model import torch def chat_with_model(prompt, max_length=512): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( inputs['input_ids'], max_length=max_length, num_return_sequences=1, temperature=0.7, top_p=0.9, top_k=50, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(output[0], skip_special_tokens=True) return response user_input = "Hello! How are you?" response = chat_with_model(user_input) print(response) ### Framework versions - PEFT 0.13.2