thesven commited on
Commit
1e865b6
Β·
verified Β·
1 Parent(s): c7bce55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -140
README.md CHANGED
@@ -1,199 +1,158 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
 
 
 
 
 
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
 
3
  ---
4
 
 
5
 
 
6
 
7
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ ## Quantization Description
11
 
12
+ This repo contains a GGUF Quantized versions of the WizardLM-2-7B model with the context expanded to 98k
13
 
14
+ <div style="text-align: center;">
15
+ <a href="https://github.com/thesven/GGUF-n-Go">
16
+ <img src="https://github.com/thesven/GGUF-n-Go/blob/main/assets/quantized_with.png?raw=true" alt="image/png" style="max-width: 350px;">
17
+ </a>
18
+ </div>
19
 
20
+ ### Prompt Template
21
+ ```bash
22
+ ### System: {system_message}
23
+ ### Human: {prompt}
24
+ ### Assistant:
25
+ ```
26
 
27
+ ### Stop Token
28
+ ```bash
29
+ </s>
30
+ ```
31
 
32
+ ### Using with transformers
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
35
 
36
+ model_name_or_path = "thesven/microsoft_WizardLM-2-7B-GPTQ-98k"
37
 
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
39
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
40
+ device_map="auto",
41
+ trust_remote_code=False,
42
+ revision="main")
43
+ model.pad_token = model.config.eos_token_id
44
 
 
45
 
46
+ prompt_template=f'''
47
+ ### System: You are a very creative story writer. Write a store on the following topic:
48
+ ### Human: Write a story about Ai
49
+ ### Assistant:
50
+ '''
51
 
52
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
53
+ output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
54
+ print(tokenizer.decode(output[0]))
55
+ ```
56
 
57
+ Weights sourced from:
58
+ [lucyknada/microsoft_WizardLM-2-7B](https://huggingface.co/lucyknada/microsoft_WizardLM-2-7B)
59
 
60
+ ## Original Model Card
61
 
62
+ <p style="font-size:20px;" align="center">
63
+ 🏠 <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
64
+ <p align="center">
65
+ πŸ€— <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a> β€’πŸ± <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
66
+ </p>
67
+ <p align="center">
68
+ πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
69
+ </p>
70
 
 
71
 
 
72
 
73
+ ## News πŸ”₯πŸ”₯πŸ”₯ [2024/04/15]
74
 
75
+ We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models,
76
+ which have improved performance on complex chat, multilingual, reasoning and agent.
77
+ New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.
78
 
79
+ - WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works
80
+ and consistently outperforms all the existing state-of-the-art opensource models.
81
+ - WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
82
+ - WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
83
 
84
+ For more details of WizardLM-2 please read our [release blog post](https://wizardlm.github.io/WizardLM2) and upcoming paper.
85
 
 
86
 
87
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ * **Model name**: WizardLM-2 7B
90
+ * **Developed by**: WizardLM@Microsoft AI
91
+ * **Base model**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
92
+ * **Parameters**: 7B
93
+ * **Language(s)**: Multilingual
94
+ * **Blog**: [Introducing WizardLM-2](https://wizardlm.github.io/WizardLM2)
95
+ * **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
96
+ * **Paper**: WizardLM-2 (Upcoming)
97
+ * **License**: Apache2.0
98
 
 
99
 
 
100
 
101
+ ## Model Capacities
102
 
 
103
 
104
+ **MT-Bench**
 
 
 
 
105
 
106
+ We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models.
107
+ The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models.
108
+ Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
109
 
110
+ <p align="center" width="100%">
111
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
112
+ </p>
113
 
 
114
 
115
+ **Human Preferences Evaluation**
116
 
117
+ We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual.
118
+ We report the win:loss rate without tie:
119
 
120
+ - WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
121
+ - WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
122
+ - WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
123
 
124
+ <p align="center" width="100%">
125
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
126
+ </p>
127
 
 
128
 
 
129
 
 
130
 
 
131
 
132
+ ## Method Overview
133
+ We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://wizardlm.github.io/WizardLM2) for more details of this system.
134
 
135
+ <p align="center" width="100%">
136
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
137
+ </p>
138
 
 
139
 
 
140
 
 
141
 
 
142
 
143
+ ## Usage
144
 
145
+ ❗<b>Note for model system prompts usage:</b>
146
 
 
147
 
148
+ <b>WizardLM-2</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
149
 
150
+ ```
151
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
152
+ detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
153
+ USER: Who are you? ASSISTANT: I am WizardLM.</s>......
154
+ ```
155
 
156
+ <b> Inference WizardLM-2 Demo Script</b>
157
 
158
+ We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github