Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,158 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
|
11 |
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
## Training Details
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
#### Preprocessing [optional]
|
89 |
|
90 |
-
[More Information Needed]
|
91 |
|
|
|
92 |
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
-
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
-
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
|
|
|
|
154 |
|
155 |
-
|
|
|
|
|
156 |
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
|
|
|
|
166 |
|
167 |
-
#### Software
|
168 |
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
-
|
|
|
176 |
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
**APA:**
|
180 |
|
181 |
-
[More Information Needed]
|
182 |
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
3 |
---
|
4 |
|
|
|
5 |
|
|
|
6 |
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
## Quantization Description
|
11 |
|
12 |
+
This repo contains a GGUF Quantized versions of the WizardLM-2-7B model with the context expanded to 98k
|
13 |
|
14 |
+
<div style="text-align: center;">
|
15 |
+
<a href="https://github.com/thesven/GGUF-n-Go">
|
16 |
+
<img src="https://github.com/thesven/GGUF-n-Go/blob/main/assets/quantized_with.png?raw=true" alt="image/png" style="max-width: 350px;">
|
17 |
+
</a>
|
18 |
+
</div>
|
19 |
|
20 |
+
### Prompt Template
|
21 |
+
```bash
|
22 |
+
### System: {system_message}
|
23 |
+
### Human: {prompt}
|
24 |
+
### Assistant:
|
25 |
+
```
|
26 |
|
27 |
+
### Stop Token
|
28 |
+
```bash
|
29 |
+
</s>
|
30 |
+
```
|
31 |
|
32 |
+
### Using with transformers
|
33 |
+
```python
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
35 |
|
36 |
+
model_name_or_path = "thesven/microsoft_WizardLM-2-7B-GPTQ-98k"
|
37 |
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
40 |
+
device_map="auto",
|
41 |
+
trust_remote_code=False,
|
42 |
+
revision="main")
|
43 |
+
model.pad_token = model.config.eos_token_id
|
44 |
|
|
|
45 |
|
46 |
+
prompt_template=f'''
|
47 |
+
### System: You are a very creative story writer. Write a store on the following topic:
|
48 |
+
### Human: Write a story about Ai
|
49 |
+
### Assistant:
|
50 |
+
'''
|
51 |
|
52 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
53 |
+
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
54 |
+
print(tokenizer.decode(output[0]))
|
55 |
+
```
|
56 |
|
57 |
+
Weights sourced from:
|
58 |
+
[lucyknada/microsoft_WizardLM-2-7B](https://huggingface.co/lucyknada/microsoft_WizardLM-2-7B)
|
59 |
|
60 |
+
## Original Model Card
|
61 |
|
62 |
+
<p style="font-size:20px;" align="center">
|
63 |
+
π <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
|
64 |
+
<p align="center">
|
65 |
+
π€ <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a> β’π± <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a> β’ π¦ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β’ π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β’ π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β’ π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
|
66 |
+
</p>
|
67 |
+
<p align="center">
|
68 |
+
π Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
|
69 |
+
</p>
|
70 |
|
|
|
71 |
|
|
|
72 |
|
73 |
+
## News π₯π₯π₯ [2024/04/15]
|
74 |
|
75 |
+
We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models,
|
76 |
+
which have improved performance on complex chat, multilingual, reasoning and agent.
|
77 |
+
New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.
|
78 |
|
79 |
+
- WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works
|
80 |
+
and consistently outperforms all the existing state-of-the-art opensource models.
|
81 |
+
- WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
|
82 |
+
- WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
|
83 |
|
84 |
+
For more details of WizardLM-2 please read our [release blog post](https://wizardlm.github.io/WizardLM2) and upcoming paper.
|
85 |
|
|
|
86 |
|
87 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
* **Model name**: WizardLM-2 7B
|
90 |
+
* **Developed by**: WizardLM@Microsoft AI
|
91 |
+
* **Base model**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
92 |
+
* **Parameters**: 7B
|
93 |
+
* **Language(s)**: Multilingual
|
94 |
+
* **Blog**: [Introducing WizardLM-2](https://wizardlm.github.io/WizardLM2)
|
95 |
+
* **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
|
96 |
+
* **Paper**: WizardLM-2 (Upcoming)
|
97 |
+
* **License**: Apache2.0
|
98 |
|
|
|
99 |
|
|
|
100 |
|
101 |
+
## Model Capacities
|
102 |
|
|
|
103 |
|
104 |
+
**MT-Bench**
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models.
|
107 |
+
The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models.
|
108 |
+
Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
|
109 |
|
110 |
+
<p align="center" width="100%">
|
111 |
+
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
|
112 |
+
</p>
|
113 |
|
|
|
114 |
|
115 |
+
**Human Preferences Evaluation**
|
116 |
|
117 |
+
We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual.
|
118 |
+
We report the win:loss rate without tie:
|
119 |
|
120 |
+
- WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
|
121 |
+
- WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
|
122 |
+
- WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
|
123 |
|
124 |
+
<p align="center" width="100%">
|
125 |
+
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
|
126 |
+
</p>
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
|
131 |
|
132 |
+
## Method Overview
|
133 |
+
We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://wizardlm.github.io/WizardLM2) for more details of this system.
|
134 |
|
135 |
+
<p align="center" width="100%">
|
136 |
+
<a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
|
137 |
+
</p>
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
143 |
+
## Usage
|
144 |
|
145 |
+
β<b>Note for model system prompts usage:</b>
|
146 |
|
|
|
147 |
|
148 |
+
<b>WizardLM-2</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
|
149 |
|
150 |
+
```
|
151 |
+
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
|
152 |
+
detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
|
153 |
+
USER: Who are you? ASSISTANT: I am WizardLM.</s>......
|
154 |
+
```
|
155 |
|
156 |
+
<b> Inference WizardLM-2 Demo Script</b>
|
157 |
|
158 |
+
We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github
|