Update README.md
Browse files
README.md
CHANGED
@@ -25,13 +25,73 @@ model-index:
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
-
##
|
29 |
TODO: Add your code
|
30 |
|
31 |
|
32 |
```python
|
33 |
-
from
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Re-train model (with Stable-baselines3)
|
29 |
TODO: Add your code
|
30 |
|
31 |
|
32 |
```python
|
33 |
+
# Load a saved LunarLander model from the Hub and retrain
|
34 |
+
import gym
|
35 |
+
from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
|
36 |
+
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
|
37 |
+
from stable_baselines3 import PPO
|
38 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
39 |
+
from stable_baselines3.common.env_util import make_vec_env
|
40 |
+
from stable_baselines3.common.vec_env import DummyVecEnv
|
41 |
|
42 |
+
repo_id = "thien1892/LunarLander-v2-ppo-v5"
|
43 |
+
filename = "ppo-LunarLander-v2.zip" # The model filename.zip
|
44 |
+
checkpoint = load_from_hub(repo_id, filename)
|
45 |
+
|
46 |
+
myenv = make_vec_env('LunarLander-v2', n_envs=16)
|
47 |
+
custom_objects = {
|
48 |
+
"learning_rate": 1e-5,
|
49 |
+
"clip_range": lambda _: 0.15,
|
50 |
+
}
|
51 |
+
model = PPO.load(checkpoint, reset_num_timesteps=True, print_system_info=True,custom_objects = custom_objects, env = myenv)
|
52 |
+
|
53 |
+
# Train it for 1,000,000 timesteps
|
54 |
+
model.learn(total_timesteps=1000000)
|
55 |
+
# Save the model
|
56 |
+
model_name = "ppo-LunarLander-v2-5m"
|
57 |
+
model.save(model_name)
|
58 |
+
|
59 |
+
# Evaluate
|
60 |
+
eval_env = gym.make("LunarLander-v2")
|
61 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
62 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
63 |
+
```
|
64 |
+
|
65 |
+
## Pust to HF hub
|
66 |
+
|
67 |
+
```python
|
68 |
+
notebook_login()
|
69 |
+
!git config --global credential.helper store
|
70 |
```
|
71 |
+
|
72 |
+
```
|
73 |
+
## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
74 |
+
repo_id = "thien1892/LunarLander-v2-ppo-5m"
|
75 |
+
|
76 |
+
# TODO: Define the name of the environment
|
77 |
+
env_id = "LunarLander-v2"
|
78 |
+
|
79 |
+
# Create the evaluation env
|
80 |
+
eval_env = DummyVecEnv([lambda: gym.make(env_id)])
|
81 |
+
|
82 |
+
|
83 |
+
# TODO: Define the model architecture we used
|
84 |
+
model_architecture = "PPO"
|
85 |
+
|
86 |
+
## TODO: Define the commit message
|
87 |
+
commit_message = "Upload PPO LunarLander-v2 trained agent"
|
88 |
+
|
89 |
+
# method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub
|
90 |
+
package_to_hub(model=model, # Our trained model
|
91 |
+
model_name=model_name, # The name of our trained model
|
92 |
+
model_architecture=model_architecture, # The model architecture we used: in our case PPO
|
93 |
+
env_id=env_id, # Name of the environment
|
94 |
+
eval_env=eval_env, # Evaluation Environment
|
95 |
+
repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
96 |
+
commit_message=commit_message)
|
97 |
+
```
|