--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 298.48 +/- 12.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Re-train model (with Stable-baselines3) TODO: Add your code ```python # Load a saved LunarLander model from the Hub and retrain import gym from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub. from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.vec_env import DummyVecEnv repo_id = "thien1892/LunarLander-v2-ppo-v5" filename = "ppo-LunarLander-v2.zip" # The model filename.zip checkpoint = load_from_hub(repo_id, filename) myenv = make_vec_env('LunarLander-v2', n_envs=16) custom_objects = { "learning_rate": 1e-5, "clip_range": lambda _: 0.15, } model = PPO.load(checkpoint, reset_num_timesteps=True, print_system_info=True,custom_objects = custom_objects, env = myenv) # Train it for 1,000,000 timesteps model.learn(total_timesteps=1000000) # Save the model model_name = "ppo-LunarLander-v2-5m" model.save(model_name) # Evaluate eval_env = gym.make("LunarLander-v2") mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ``` ## Pust to HF hub ```python notebook_login() !git config --global credential.helper store ``` ``` ## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2 repo_id = "thien1892/LunarLander-v2-ppo-5m" # TODO: Define the name of the environment env_id = "LunarLander-v2" # Create the evaluation env eval_env = DummyVecEnv([lambda: gym.make(env_id)]) # TODO: Define the model architecture we used model_architecture = "PPO" ## TODO: Define the commit message commit_message = "Upload PPO LunarLander-v2 trained agent" # method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub package_to_hub(model=model, # Our trained model model_name=model_name, # The name of our trained model model_architecture=model_architecture, # The model architecture we used: in our case PPO env_id=env_id, # Name of the environment eval_env=eval_env, # Evaluation Environment repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2 commit_message=commit_message) ```