ppo-LunarLander-v2 / config.json
thiomajid's picture
Upload PPO LunarLander-v2 trained agent
131a817 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ec6c907370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ec6c907400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ec6c907490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ec6c907520>", "_build": "<function ActorCriticPolicy._build at 0x79ec6c9075b0>", "forward": "<function ActorCriticPolicy.forward at 0x79ec6c907640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ec6c9076d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ec6c907760>", "_predict": "<function ActorCriticPolicy._predict at 0x79ec6c9077f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ec6c907880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ec6c907910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ec6c9079a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ec6ca9a140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 262144, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719683300504014238, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpd7r0UKLu6WXUIu+IRh7iOVGI7GJpVOQAAgD8AAAAAVa4GP8LUdj64/ow+UzxCvr9Ln73WPJI+AACAPwAAAADNBj28Vha0PyKowb42l669BJv4O0Y8aTwAAAAAAAAAAAD4sT6kUws8okoJvV5lFbsmE3k9bTHDuwAAgD8AAIA/+nUWPudJIT4Ndpw+Yz4Vv3d4mL4JRks+AAAAAAAAAABA++C9A3pEP0+Lkb5ieqO+wJAmvZQqC74AAAAAAAAAAD1FaT8UWC69EvRHP1Rfib5pgDw+1suUPgAAAAAAAAAAM/8KPMqfjD/Cm5a+Sw3CvpFzhT219pS+AAAAAAAAAAAnsRy/RtnpPtAFLr23nbG+L2o4Pet1jj4AAAAAAAAAAMYtIz/c8is93izDO70tg7lExC0+hv3COwAAgD8AAIA/CnegPtzAN7zQnic7hn8SOi1Lg71GmcI5AACAPwAAgD8q7b8+2M7NPq5WzT7ZQ1a+GPzMvFbb6TwAAAAAAAAAAG6u5b6LTpQ9u6jfvoS/077yiUY853jJvwAAgD8AAAAA7SmJPosEUD/u8ZU+3fnWvhl5gD5fVQo+AAAAAAAAAABaR4S92EeUPv1T0Lwk/LC+jTUUPIrL07wAAAAAAAAAANPN1D4N3hu9FXqrvGoz6DwxcCA+w1j8uwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFHXZdv863mMAWyUS5WMAXSUR0CAKJd9lVcVdX2UKGgGR8BOedNWU8msaAdLyGgIR0CAKcMKkVN6dX2UKGgGR0AtXD7ZWaMKaAdLf2gIR0CAK0GM4tHydX2UKGgGR8A1Z1He7+UAaAdLqGgIR0CAK2dYnv2HdX2UKGgGR8BbYzcAR02caAdLtGgIR0CAK6xSpBHDdX2UKGgGR8BMBGA9V3lkaAdLwmgIR0CALZDXOGCadX2UKGgGR8Au2waisXBQaAdLwGgIR0CALeUxmCiAdX2UKGgGR8A6NWO6unuRaAdLrGgIR0CAMvcIJJGwdX2UKGgGR8A1oOhTOxB3aAdLeGgIR0CAM+OEM9bHdX2UKGgGR8A2h5mh/RVqaAdLo2gIR0CANUiudPLxdX2UKGgGR8BAyPzvqkdnaAdL2WgIR0CANjZL7GeddX2UKGgGR0Ah47ulXRw7aAdLmGgIR0CANl6AvtdBdX2UKGgGR8BA6HaFmFrVaAdLrmgIR0CAOzGax5cDdX2UKGgGR8BA8axPfsNUaAdL0WgIR0CAO78JD3M7dX2UKGgGR8BDjthNM496aAdLg2gIR0CAQRmbsniOdX2UKGgGR0BE2/G2kSElaAdLi2gIR0CAQwnUDuBudX2UKGgGR8AgpriVB2OiaAdL12gIR0CARwAvL5h0dX2UKGgGR8A4W7Uoa1kUaAdL9WgIR0CAS3avicXndX2UKGgGR8BDkYYaYNRWaAdLi2gIR0CAUF2ugYgrdX2UKGgGR0A90M6zVtoBaAdN6ANoCEdAgFnKPn0TUXV9lChoBkdAVqYHt4RmLGgHTegDaAhHQIBdDHyVfNR1fZQoaAZHwCBrzND+irVoB0uUaAhHQICMYYcebNN1fZQoaAZHQF6XKjBVMmFoB03oA2gIR0CAk/xPwd8zdX2UKGgGR0AU4e3hGYrsaAdLm2gIR0CAmSnJDE3sdX2UKGgGR8AwE+FDfFaTaAdLumgIR0CApNPhybQUdX2UKGgGR0BUk7EYO2AoaAdN6ANoCEdAgKT7voePrHV9lChoBkdAVgRfE4vN/2gHTegDaAhHQICptPpIMBp1fZQoaAZHQFgfS00FbFFoB03oA2gIR0CAsI+kgwGodX2UKGgGR8BQOgNPP9k0aAdLtmgIR0CAsUJqqOtGdX2UKGgGR8A2IgvDgqEwaAdLb2gIR0CAsy2kSElFdX2UKGgGR0BSuhZuAI6baAdN6ANoCEdAgLuphF3IMnV9lChoBkdAXcH5qM3qA2gHTegDaAhHQIC/+Y6XBxh1fZQoaAZHwDhvEWIoE0VoB0vfaAhHQIDHPdIoVmB1fZQoaAZHQExJyCFsYVJoB0ufaAhHQIDI9ELH+611fZQoaAZHQF0JKE384xVoB03oA2gIR0CAzWRB/qgRdX2UKGgGR8AccgFHJ9y+aAdL6GgIR0CA0j2K2rn1dX2UKGgGR8BMd7qyGBWgaAdLzmgIR0CA2oi7kGRndX2UKGgGR0BcbCjxkNF0aAdN6ANoCEdAgN1tKyv9tXV9lChoBkdAFjPw/gR9PWgHS8JoCEdAgOP6RISUT3V9lChoBkdAU4V0Lc9GJGgHTegDaAhHQIDkGpn6Eal1fZQoaAZHQFcuY8Md92JoB03oA2gIR0CA5Mp5u63BdX2UKGgGR8AfJB3Roh6jaAdLvWgIR0CA5jgAIY3vdX2UKGgGR0BKYLns9jgAaAdNJQFoCEdAgOhbBfrrxHV9lChoBkfAM+/sAvL5h2gHS79oCEdAgOmqLbYbsHV9lChoBkdARvIB1cMVlGgHTegDaAhHQIDskNe+mFd1fZQoaAZHQFYVBjFyaNNoB03oA2gIR0CA8FGz8gp0dX2UKGgGR8BNrdyLhrFgaAdLy2gIR0CA8xhhH9WIdX2UKGgGR0Bet9tEXtSiaAdN6ANoCEdAgPRH8sMAm3V9lChoBkdAF5YrJ8v25GgHS51oCEdAgPShdld1MnV9lChoBkfASoVGgBcRlGgHS7BoCEdAgPWj4Hoou3V9lChoBkfAMLklzEJjUmgHS8hoCEdAgPmubI91U3V9lChoBkdAK0YDDCP6sWgHS5hoCEdAgPrkH2RJVnV9lChoBkfAYRBvJA+pwWgHTT4BaAhHQID7XNTtLL91fZQoaAZHwEq0liz9jwxoB0uVaAhHQID9+xY7q6h1fZQoaAZHQC957qptJnRoB03oA2gIR0CA/qFNcnmadX2UKGgGR8BcRat1ZDAraAdNBAFoCEdAgQDK/20zCXV9lChoBkdAI4cvM8ox6GgHS4FoCEdAgQEHy/bj+HV9lChoBkfAM2epwS8J2WgHS6poCEdAgQIWJiy6c3V9lChoBkdASKkDSw4bTGgHS91oCEdAgSu+9i+cpnV9lChoBkdAP1n5SFXaJ2gHS5hoCEdAgSxemvW6LHV9lChoBkdAUnTMcIZ62WgHTegDaAhHQIEu/RkVerx1fZQoaAZHQEasujASFoNoB0udaAhHQIE1DONYKY11fZQoaAZHQCVlmcvugHxoB0uoaAhHQIE4bvNNahZ1fZQoaAZHQDejZvkzXSVoB0vVaAhHQIE4sKb8WKx1fZQoaAZHQFexblA/s3RoB03oA2gIR0CBPu+8oQWfdX2UKGgGR0AUxXIU8FINaAdLpWgIR0CBQDZ9NN8FdX2UKGgGR0BF9ggHNX5naAdLl2gIR0CBQPZezD4ydX2UKGgGR8BB8TzmOlwcaAdL3GgIR0CBRP9XtBv8dX2UKGgGR0BaBy2x6fJ4aAdN6ANoCEdAgUeF+EytWHV9lChoBkdAKhF7+kxh2GgHS9RoCEdAgUvme+VTrHV9lChoBkfAU9HM8ox59mgHS8FoCEdAgUy0dRzij3V9lChoBkfAIqlE7W/ag2gHS8VoCEdAgU1QKKHfuXV9lChoBkdAQD4OSW7e22gHS5toCEdAgU/+HrQgLnV9lChoBkfAUqLlU6xPf2gHS+NoCEdAgVadB8hLXnV9lChoBkdAWmbcKw6hg2gHTegDaAhHQIFYeU4aP0Z1fZQoaAZHQCsidtl7MPloB0uSaAhHQIFbXMhX8wZ1fZQoaAZHv8IL1EmY0EZoB0v2aAhHQIFgaFbmlqJ1fZQoaAZHwGEOwqiGnGdoB0vJaAhHQIFgh2W6bvx1fZQoaAZHwDHjj7yhBZ9oB0ugaAhHQIFgv2IwdsB1fZQoaAZHQC3X/cWTHKhoB0uzaAhHQIFqDfYSQHR1fZQoaAZHwFNQxJd0JWxoB0uNaAhHQIFrKF/QSjB1fZQoaAZHwAGSzollbvBoB0u4aAhHQIFswatLcsV1fZQoaAZHQFXHzhgmZ3NoB03oA2gIR0CBb1dadMCcdX2UKGgGR0BAngLZzxPPaAdN6ANoCEdAgXXHtF8XvnV9lChoBkfAU6dY2bXpW2gHS7toCEdAgXanfl6qsHV9lChoBkdABGaScLBsRGgHS9RoCEdAgXlHaews5HV9lChoBkfAMRZqqOtGNWgHS+BoCEdAgXrOanaWX3V9lChoBkdAXLOkep4r0GgHTegDaAhHQIGDOdVea8Z1fZQoaAZHwECqb1h9b5doB0umaAhHQIGDmBBiTdN1fZQoaAZHwGaJSP2f029oB0vyaAhHQIGIhcqvvBt1fZQoaAZHQEb5W/8EV35oB03oA2gIR0CBihl7tzCDdX2UKGgGR8BGbz2vjfelaAdLuGgIR0CBi/KoybhFdX2UKGgGR0BeX/nr6ciGaAdN6ANoCEdAgYwTLGJemnV9lChoBkfAHFv4ubqhUWgHS51oCEdAgY13JHRTj3V9lChoBkfAP9ZWzWwu/WgHS8VoCEdAgY3/H5rP+nV9lChoBkdAVdd5zHS4OWgHTegDaAhHQIGPRvrGBFx1fZQoaAZHQEHaHcDbJwNoB0uMaAhHQIGTdIqbz9V1fZQoaAZHQF00R5TqB3BoB03oA2gIR0CBk5T5wfhddX2UKGgGR8Bgxc9yLhrFaAdL+GgIR0CBln2/zreJdX2UKGgGR8BChLA57w8XaAdLq2gIR0CBnbnW8RL9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}