My first model trained with the help of HF_RL course.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.74 +/- 19.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e67d5d85870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67d5d85900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67d5d85990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67d5d85a20>", "_build": "<function ActorCriticPolicy._build at 0x7e67d5d85ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7e67d5d85b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67d5d85bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67d5d85c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7e67d5d85cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67d5d85d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67d5d85e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67d5d85ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e67ed7e4b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733033854027820093, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMRmD7y5xQ/muQEPZ8MAb9tNB4+hLkQPQAAAAAAAAAAANoAvSmcd7p+y4I1gMr9L0iZALtZGL60AACAPwAAgD9N5hA9SOm2Oaq1TDMe4h+wSJJmPBL6ybMAAIA/AACAP0DfrL1SO5C7tzFJPjLBybtEJru8AkuwvAAAAAAAAAAAYANFPk62n7xyr989BXxLvNAeG74utyC9AACAPwAAgD+qFJ4+clcpP2z4gT5NnA+/n/O8Pme8ETwAAAAAAAAAAIB7Gr7c9LI+RdsNPH4F074Ixe+9DfBvPQAAAAAAAAAAM5WFPewj7bsW91I8P+ICPcRIOr2+b9c9AACAPwAAgD99l4Y+8gOSPr2Oib2Q0rS+kyxWPZZZYbwAAAAAAAAAALqiC77yiBA/fZxpvfZJAb8QrQO+dN4nPAAAAAAAAAAAAPuyPD9pOj9+Wt68kMsPvx2GljpBzRQ9AAAAAAAAAACardu912c0PMOyZj7DelG+QC+rPQDZYz0AAAAAAAAAAEqGVL64EY49wLztPm11gr6xDLy9tvBRvwAAAAAAAAAAwMUmvgQPmj7OEwo+l7quvmenkr3Gwb09AAAAAAAAAACAyhs+hSb7PIIiWr7U/Ui+nsdevfnwCb0AAAAAAAAAADO/1LwceTO8DBsNvNJm1r02Wno8Qc9GPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFYO6d1+y+MAWyUS9KMAXSUR0CjgnbcfvF4dX2UKGgGR0ByKs5sCT2WaAdLwGgIR0CjgosXBP9DdX2UKGgGR0Bw7yW8h9sraAdL2GgIR0CjgoitA9mpdX2UKGgGR0BxiZYjjaPCaAdLz2gIR0CjgwtkOI69dX2UKGgGR0BxyYd3jdYXaAdL8mgIR0Cjgy4AbQ1KdX2UKGgGR0BwOffYSQHSaAdLvWgIR0Cjg1KT8pCsdX2UKGgGR0BwtQUlAu7IaAdL9GgIR0Cjg1EzO5avdX2UKGgGR0Bu87bzshPkaAdLumgIR0Cjg2Q5vLowdX2UKGgGR0BsTjKRuCPIaAdN9gFoCEdAo4NxssQNC3V9lChoBkdAcNBHrQgLZ2gHS/loCEdAo4OTS7Xg+HV9lChoBkdAcZhrqt5lfGgHS+xoCEdAo4Oes90RvnV9lChoBkdAcN3kxh2GI2gHS8loCEdAo4Qq15Sm7HV9lChoBkdAQILDhtLteGgHS61oCEdAo4R5CSidrnV9lChoBkdAcfHepGWldmgHS85oCEdAo4VJKzzErHV9lChoBkdAcTUGh24d62gHS7BoCEdAo4VnBk7OmnV9lChoBkdAcmejOLR8dGgHS+JoCEdAo4WAmsvIwXV9lChoBkdAcaSnBLwnY2gHS9FoCEdAo4W6BEroXHV9lChoBkdAcRz1XeWOZWgHS7JoCEdAo4XGbXpW3nV9lChoBkdAcR4Q0oBq9GgHS8loCEdAo4XiT8pCr3V9lChoBkdAco2o73fygGgHS8FoCEdAo4XsNMGorHV9lChoBkdAb6kDNhVlw2gHTQUBaAhHQKOF/pfQa751fZQoaAZHQHCIhUFSsKdoB0vZaAhHQKOGIV8CxNZ1fZQoaAZHQHGJzf3vhIhoB003AWgIR0Cjhmlmvnr6dX2UKGgGR0BxB3iyY5T7aAdL/mgIR0CjhnjpLVWkdX2UKGgGR0Bvxm9Jz1braAdLz2gIR0CjhvPy9VWCdX2UKGgGR0ByJ3WWhRIjaAdNKQFoCEdAo4b4LCvX9XV9lChoBkdAcpEhxYJVsGgHS/NoCEdAo4cIKYzBRHV9lChoBkdAcRDA2ycCo2gHS7loCEdAo4ePrhR64XV9lChoBkdAcY552yLQ5WgHS8NoCEdAo4eS8nNPg3V9lChoBkdATtrxgAp8W2gHS6FoCEdAo4fAjSofjnV9lChoBkdAbracYIjW1GgHS7VoCEdAo4fNycTakHV9lChoBkdAZ3hDqnm7rmgHTUsDaAhHQKOHzslb/wR1fZQoaAZHQHDqoG2TgVJoB0vHaAhHQKOIByMDOkd1fZQoaAZHQHPJvCVKPGRoB0vfaAhHQKOIDfrrxAl1fZQoaAZHQHC4pL26ClJoB0vDaAhHQKOIMS5iExt1fZQoaAZHQHLN5xFRYRxoB0v4aAhHQKOIpp7kXDZ1fZQoaAZHQHIkEcfeUINoB0v3aAhHQKOI3M1TBIp1fZQoaAZHQG+xSGahHsloB0vqaAhHQKOI/DQ7cO91fZQoaAZHQHCuuokzGgloB0vXaAhHQKOJUNS619h1fZQoaAZHQG76pqynk1doB0veaAhHQKOJapaRp111fZQoaAZHQHJAmxY7q6hoB0v5aAhHQKOJ1DlYEGJ1fZQoaAZHQGr8RaxHG0hoB02xAmgIR0Cjid0rsjVydX2UKGgGR0Bw4JOBUaQ4aAdL3WgIR0CjihTho/RmdX2UKGgGR0BvXoAhje9BaAdLy2gIR0CjiiF6iTMadX2UKGgGR0ByIMP8Q7LdaAdLwWgIR0CjilGwqy4XdX2UKGgGR0BxlN1aGHpKaAdL92gIR0Cjim9eyAx0dX2UKGgGR0ByaD029+PSaAdL82gIR0CjipXVCojwdX2UKGgGR0BxZzPC2tuDaAdL6mgIR0CjisqcEvCedX2UKGgGR0BwMsIZ62ORaAdL32gIR0CjitS26TW5dX2UKGgGR0ByB3dDYywfaAdNEAFoCEdAo4sIqG1x83V9lChoBkdAcJQood+5OWgHS8VoCEdAo4sVAs052nV9lChoBkdAcB+pI+W4VmgHS8VoCEdAo4tlmSQo1HV9lChoBkdAcIXIsAeaKGgHS79oCEdAo4vDD/EOy3V9lChoBkdAbDNgw482aWgHTcwBaAhHQKOLzY2bXpZ1fZQoaAZHQHIh6c/dIoVoB00gAWgIR0CjjFrsa86FdX2UKGgGR0ByD/sY2sJZaAdL/mgIR0CjjGubiIcjdX2UKGgGR0BwiOj4593KaAdL0mgIR0CjjGxMewLWdX2UKGgGR0ByBx1V5rxiaAdLsmgIR0CjjHczyjHodX2UKGgGR0ByrGzmfXf7aAdL8GgIR0CjjLWDg62fdX2UKGgGR0BxTrPa+N96aAdLw2gIR0CjjN+LehwmdX2UKGgGR0Bx56JCSidraAdLyGgIR0CjjVzV2A5JdX2UKGgGR0Bvysfms/6gaAdL32gIR0CjjWRsdkrgdX2UKGgGR0Bx5Ox4Y77saAdNFwFoCEdAo41jj94u9XV9lChoBkdAcNgrNnoPkWgHS9FoCEdAo41sdPtUoHV9lChoBkdAbfcvStvGZWgHTQABaAhHQKONb7k4m1J1fZQoaAZHQHEanN1QqI9oB0u7aAhHQKONiEYfnwJ1fZQoaAZHQG7gE5p8F6loB0vPaAhHQKOODtXPqs51fZQoaAZHQHBZL/S6UaBoB0vgaAhHQKOONTvRZ2Z1fZQoaAZHQHGj2wmmce9oB0u4aAhHQKOOYlOXVsl1fZQoaAZHQHIwDIzWPLhoB0u9aAhHQKOOcEEC/491fZQoaAZHQHE8x4yGi6BoB0vVaAhHQKOOpM4cWCV1fZQoaAZHQHFSCFj/dZdoB0v2aAhHQKOPIQRPGhp1fZQoaAZHQHDtp+x4Y79oB0vlaAhHQKOPX7AtWdV1fZQoaAZHQHDosnNPgvVoB0u9aAhHQKOPeD+R5kd1fZQoaAZHQG2rnTy8SPFoB0vEaAhHQKOPhRtP5591fZQoaAZHQG2orrX18LNoB0vIaAhHQKOPj7ngYP51fZQoaAZHQHG8YTsY2sJoB0vQaAhHQKOPoHLzPKN1fZQoaAZHQHF2sibDuShoB0vOaAhHQKOPqpDu0C11fZQoaAZHQHGxO1F6RhdoB00bAWgIR0Cjj81JlJ6IdX2UKGgGR0Bw/BBF/hESaAdLxWgIR0CjkD6jnFHbdX2UKGgGR0BzXbVG0/noaAdNAQFoCEdAo5BPU8V58nV9lChoBkdAcdMMjNY8uGgHS9NoCEdAo5CStYB/7XV9lChoBkdAcc7F7D2rXGgHS8hoCEdAo5CrsSkCWHV9lChoBkdAcUuxgRbr1WgHS9VoCEdAo5DBpUPxx3V9lChoBkdAcJxHskY4yWgHS71oCEdAo5DAtYjjaXV9lChoBkfAShxT4tYjjmgHTVUCaAhHQKOQ3+gDifh1fZQoaAZHQGh8tLUTcqRoB001AmgIR0CjkR14X40udX2UKGgGR0BwRT+717IDaAdLv2gIR0CjkZCbc45tdX2UKGgGR0BwsYSkCV8kaAdLvmgIR0CjkZhtcfNidX2UKGgGR0Bw0NeyAxzraAdL1mgIR0CjkbA5Jbt7dX2UKGgGR0BzaqCcwxnGaAdL72gIR0Cjkbq5kK/mdX2UKGgGR0BwQoSh8IAwaAdLyGgIR0Cjkc/ReC04dX2UKGgGR0BvBEYXO4XoaAdL22gIR0Cjkfc+A3DOdX2UKGgGR0ByCSVTrE9/aAdL7mgIR0CjkgP+4smOdX2UKGgGR0BxNRp5/smfaAdL2mgIR0CjkiA2AG0NdX2UKGgGR0BwG/zErGzbaAdLt2gIR0CjknwumJm/dX2UKGgGR0Bw3MYYR/ViaAdL02gIR0Cjkn0CaJAMdX2UKGgGR0Bw2g150KZ2aAdL3WgIR0CjkqRJNCZ4dX2UKGgGR0BvKrlzU7SzaAdLxmgIR0CjkrhPCVKPdX2UKGgGR0BwCCYIBzV+aAdLwGgIR0Cjkryv9tMxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:055fb5e0d98cc21cd19cdc87e01b02dc4366eaa9acb5ee0bcea38b670d3101a5
|
3 |
+
size 147907
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e67d5d85870>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67d5d85900>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67d5d85990>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67d5d85a20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e67d5d85ab0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e67d5d85b40>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67d5d85bd0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67d5d85c60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e67d5d85cf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67d5d85d80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67d5d85e10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67d5d85ea0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e67ed7e4b80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1733033854027820093,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMRmD7y5xQ/muQEPZ8MAb9tNB4+hLkQPQAAAAAAAAAAANoAvSmcd7p+y4I1gMr9L0iZALtZGL60AACAPwAAgD9N5hA9SOm2Oaq1TDMe4h+wSJJmPBL6ybMAAIA/AACAP0DfrL1SO5C7tzFJPjLBybtEJru8AkuwvAAAAAAAAAAAYANFPk62n7xyr989BXxLvNAeG74utyC9AACAPwAAgD+qFJ4+clcpP2z4gT5NnA+/n/O8Pme8ETwAAAAAAAAAAIB7Gr7c9LI+RdsNPH4F074Ixe+9DfBvPQAAAAAAAAAAM5WFPewj7bsW91I8P+ICPcRIOr2+b9c9AACAPwAAgD99l4Y+8gOSPr2Oib2Q0rS+kyxWPZZZYbwAAAAAAAAAALqiC77yiBA/fZxpvfZJAb8QrQO+dN4nPAAAAAAAAAAAAPuyPD9pOj9+Wt68kMsPvx2GljpBzRQ9AAAAAAAAAACardu912c0PMOyZj7DelG+QC+rPQDZYz0AAAAAAAAAAEqGVL64EY49wLztPm11gr6xDLy9tvBRvwAAAAAAAAAAwMUmvgQPmj7OEwo+l7quvmenkr3Gwb09AAAAAAAAAACAyhs+hSb7PIIiWr7U/Ui+nsdevfnwCb0AAAAAAAAAADO/1LwceTO8DBsNvNJm1r02Wno8Qc9GPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFYO6d1+y+MAWyUS9KMAXSUR0CjgnbcfvF4dX2UKGgGR0ByKs5sCT2WaAdLwGgIR0CjgosXBP9DdX2UKGgGR0Bw7yW8h9sraAdL2GgIR0CjgoitA9mpdX2UKGgGR0BxiZYjjaPCaAdLz2gIR0CjgwtkOI69dX2UKGgGR0BxyYd3jdYXaAdL8mgIR0Cjgy4AbQ1KdX2UKGgGR0BwOffYSQHSaAdLvWgIR0Cjg1KT8pCsdX2UKGgGR0BwtQUlAu7IaAdL9GgIR0Cjg1EzO5avdX2UKGgGR0Bu87bzshPkaAdLumgIR0Cjg2Q5vLowdX2UKGgGR0BsTjKRuCPIaAdN9gFoCEdAo4NxssQNC3V9lChoBkdAcNBHrQgLZ2gHS/loCEdAo4OTS7Xg+HV9lChoBkdAcZhrqt5lfGgHS+xoCEdAo4Oes90RvnV9lChoBkdAcN3kxh2GI2gHS8loCEdAo4Qq15Sm7HV9lChoBkdAQILDhtLteGgHS61oCEdAo4R5CSidrnV9lChoBkdAcfHepGWldmgHS85oCEdAo4VJKzzErHV9lChoBkdAcTUGh24d62gHS7BoCEdAo4VnBk7OmnV9lChoBkdAcmejOLR8dGgHS+JoCEdAo4WAmsvIwXV9lChoBkdAcaSnBLwnY2gHS9FoCEdAo4W6BEroXHV9lChoBkdAcRz1XeWOZWgHS7JoCEdAo4XGbXpW3nV9lChoBkdAcR4Q0oBq9GgHS8loCEdAo4XiT8pCr3V9lChoBkdAco2o73fygGgHS8FoCEdAo4XsNMGorHV9lChoBkdAb6kDNhVlw2gHTQUBaAhHQKOF/pfQa751fZQoaAZHQHCIhUFSsKdoB0vZaAhHQKOGIV8CxNZ1fZQoaAZHQHGJzf3vhIhoB003AWgIR0Cjhmlmvnr6dX2UKGgGR0BxB3iyY5T7aAdL/mgIR0CjhnjpLVWkdX2UKGgGR0Bvxm9Jz1braAdLz2gIR0CjhvPy9VWCdX2UKGgGR0ByJ3WWhRIjaAdNKQFoCEdAo4b4LCvX9XV9lChoBkdAcpEhxYJVsGgHS/NoCEdAo4cIKYzBRHV9lChoBkdAcRDA2ycCo2gHS7loCEdAo4ePrhR64XV9lChoBkdAcY552yLQ5WgHS8NoCEdAo4eS8nNPg3V9lChoBkdATtrxgAp8W2gHS6FoCEdAo4fAjSofjnV9lChoBkdAbracYIjW1GgHS7VoCEdAo4fNycTakHV9lChoBkdAZ3hDqnm7rmgHTUsDaAhHQKOHzslb/wR1fZQoaAZHQHDqoG2TgVJoB0vHaAhHQKOIByMDOkd1fZQoaAZHQHPJvCVKPGRoB0vfaAhHQKOIDfrrxAl1fZQoaAZHQHC4pL26ClJoB0vDaAhHQKOIMS5iExt1fZQoaAZHQHLN5xFRYRxoB0v4aAhHQKOIpp7kXDZ1fZQoaAZHQHIkEcfeUINoB0v3aAhHQKOI3M1TBIp1fZQoaAZHQG+xSGahHsloB0vqaAhHQKOI/DQ7cO91fZQoaAZHQHCuuokzGgloB0vXaAhHQKOJUNS619h1fZQoaAZHQG76pqynk1doB0veaAhHQKOJapaRp111fZQoaAZHQHJAmxY7q6hoB0v5aAhHQKOJ1DlYEGJ1fZQoaAZHQGr8RaxHG0hoB02xAmgIR0Cjid0rsjVydX2UKGgGR0Bw4JOBUaQ4aAdL3WgIR0CjihTho/RmdX2UKGgGR0BvXoAhje9BaAdLy2gIR0CjiiF6iTMadX2UKGgGR0ByIMP8Q7LdaAdLwWgIR0CjilGwqy4XdX2UKGgGR0BxlN1aGHpKaAdL92gIR0Cjim9eyAx0dX2UKGgGR0ByaD029+PSaAdL82gIR0CjipXVCojwdX2UKGgGR0BxZzPC2tuDaAdL6mgIR0CjisqcEvCedX2UKGgGR0BwMsIZ62ORaAdL32gIR0CjitS26TW5dX2UKGgGR0ByB3dDYywfaAdNEAFoCEdAo4sIqG1x83V9lChoBkdAcJQood+5OWgHS8VoCEdAo4sVAs052nV9lChoBkdAcB+pI+W4VmgHS8VoCEdAo4tlmSQo1HV9lChoBkdAcIXIsAeaKGgHS79oCEdAo4vDD/EOy3V9lChoBkdAbDNgw482aWgHTcwBaAhHQKOLzY2bXpZ1fZQoaAZHQHIh6c/dIoVoB00gAWgIR0CjjFrsa86FdX2UKGgGR0ByD/sY2sJZaAdL/mgIR0CjjGubiIcjdX2UKGgGR0BwiOj4593KaAdL0mgIR0CjjGxMewLWdX2UKGgGR0ByBx1V5rxiaAdLsmgIR0CjjHczyjHodX2UKGgGR0ByrGzmfXf7aAdL8GgIR0CjjLWDg62fdX2UKGgGR0BxTrPa+N96aAdLw2gIR0CjjN+LehwmdX2UKGgGR0Bx56JCSidraAdLyGgIR0CjjVzV2A5JdX2UKGgGR0Bvysfms/6gaAdL32gIR0CjjWRsdkrgdX2UKGgGR0Bx5Ox4Y77saAdNFwFoCEdAo41jj94u9XV9lChoBkdAcNgrNnoPkWgHS9FoCEdAo41sdPtUoHV9lChoBkdAbfcvStvGZWgHTQABaAhHQKONb7k4m1J1fZQoaAZHQHEanN1QqI9oB0u7aAhHQKONiEYfnwJ1fZQoaAZHQG7gE5p8F6loB0vPaAhHQKOODtXPqs51fZQoaAZHQHBZL/S6UaBoB0vgaAhHQKOONTvRZ2Z1fZQoaAZHQHGj2wmmce9oB0u4aAhHQKOOYlOXVsl1fZQoaAZHQHIwDIzWPLhoB0u9aAhHQKOOcEEC/491fZQoaAZHQHE8x4yGi6BoB0vVaAhHQKOOpM4cWCV1fZQoaAZHQHFSCFj/dZdoB0v2aAhHQKOPIQRPGhp1fZQoaAZHQHDtp+x4Y79oB0vlaAhHQKOPX7AtWdV1fZQoaAZHQHDosnNPgvVoB0u9aAhHQKOPeD+R5kd1fZQoaAZHQG2rnTy8SPFoB0vEaAhHQKOPhRtP5591fZQoaAZHQG2orrX18LNoB0vIaAhHQKOPj7ngYP51fZQoaAZHQHG8YTsY2sJoB0vQaAhHQKOPoHLzPKN1fZQoaAZHQHF2sibDuShoB0vOaAhHQKOPqpDu0C11fZQoaAZHQHGxO1F6RhdoB00bAWgIR0Cjj81JlJ6IdX2UKGgGR0Bw/BBF/hESaAdLxWgIR0CjkD6jnFHbdX2UKGgGR0BzXbVG0/noaAdNAQFoCEdAo5BPU8V58nV9lChoBkdAcdMMjNY8uGgHS9NoCEdAo5CStYB/7XV9lChoBkdAcc7F7D2rXGgHS8hoCEdAo5CrsSkCWHV9lChoBkdAcUuxgRbr1WgHS9VoCEdAo5DBpUPxx3V9lChoBkdAcJxHskY4yWgHS71oCEdAo5DAtYjjaXV9lChoBkfAShxT4tYjjmgHTVUCaAhHQKOQ3+gDifh1fZQoaAZHQGh8tLUTcqRoB001AmgIR0CjkR14X40udX2UKGgGR0BwRT+717IDaAdLv2gIR0CjkZCbc45tdX2UKGgGR0BwsYSkCV8kaAdLvmgIR0CjkZhtcfNidX2UKGgGR0Bw0NeyAxzraAdL1mgIR0CjkbA5Jbt7dX2UKGgGR0BzaqCcwxnGaAdL72gIR0Cjkbq5kK/mdX2UKGgGR0BwQoSh8IAwaAdLyGgIR0Cjkc/ReC04dX2UKGgGR0BvBEYXO4XoaAdL22gIR0Cjkfc+A3DOdX2UKGgGR0ByCSVTrE9/aAdL7mgIR0CjkgP+4smOdX2UKGgGR0BxNRp5/smfaAdL2mgIR0CjkiA2AG0NdX2UKGgGR0BwG/zErGzbaAdLt2gIR0CjknwumJm/dX2UKGgGR0Bw3MYYR/ViaAdL02gIR0Cjkn0CaJAMdX2UKGgGR0Bw2g150KZ2aAdL3WgIR0CjkqRJNCZ4dX2UKGgGR0BvKrlzU7SzaAdLxmgIR0CjkrhPCVKPdX2UKGgGR0BwCCYIBzV+aAdLwGgIR0Cjkryv9tMxdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ece8841403c4060427500f8ee127a43e938f0f4839d2f5736f121fd79f1fdb
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25c9232bbedb8e7bce0105755828b646ed4b5f9c297aca10c554dbc2ea5c4cab
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.73701, "std_reward": 19.185356625595556, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-01T07:22:02.860708"}
|