thorirhrafn commited on
Commit
7af47ec
·
verified ·
1 Parent(s): 74209d3

End of training

Browse files
Files changed (1) hide show
  1. README.md +26 -3
README.md CHANGED
@@ -5,6 +5,8 @@ tags:
5
  - trl
6
  - reward-trainer
7
  - generated_from_trainer
 
 
8
  base_model: AI-Sweden-Models/gpt-sw3-1.3b
9
  model-index:
10
  - name: gpt1B_reward_model2
@@ -17,6 +19,9 @@ should probably proofread and complete it, then remove this comment. -->
17
  # gpt1B_reward_model2
18
 
19
  This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset.
 
 
 
20
 
21
  ## Model description
22
 
@@ -39,14 +44,32 @@ The following hyperparameters were used during training:
39
  - train_batch_size: 1
40
  - eval_batch_size: 1
41
  - seed: 42
42
- - gradient_accumulation_steps: 8
43
- - total_train_batch_size: 8
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
- - num_epochs: 1
47
 
48
  ### Training results
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
 
52
  ### Framework versions
 
5
  - trl
6
  - reward-trainer
7
  - generated_from_trainer
8
+ metrics:
9
+ - accuracy
10
  base_model: AI-Sweden-Models/gpt-sw3-1.3b
11
  model-index:
12
  - name: gpt1B_reward_model2
 
19
  # gpt1B_reward_model2
20
 
21
  This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0000
24
+ - Accuracy: 1.0
25
 
26
  ## Model description
27
 
 
44
  - train_batch_size: 1
45
  - eval_batch_size: 1
46
  - seed: 42
 
 
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: linear
49
+ - num_epochs: 2
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.0 | 0.11 | 200 | 0.0124 | 0.9930 |
56
+ | 0.0002 | 0.22 | 400 | 0.0034 | 0.9965 |
57
+ | 0.0 | 0.33 | 600 | 0.0003 | 1.0 |
58
+ | 0.0 | 0.44 | 800 | 0.0003 | 1.0 |
59
+ | 0.0 | 0.55 | 1000 | 0.0003 | 1.0 |
60
+ | 0.0 | 0.65 | 1200 | 0.0004 | 1.0 |
61
+ | 0.0 | 0.76 | 1400 | 0.0000 | 1.0 |
62
+ | 0.0 | 0.87 | 1600 | 0.0000 | 1.0 |
63
+ | 0.0 | 0.98 | 1800 | 0.0000 | 1.0 |
64
+ | 0.0 | 1.09 | 2000 | 0.0000 | 1.0 |
65
+ | 0.0 | 1.2 | 2200 | 0.0000 | 1.0 |
66
+ | 0.0001 | 1.31 | 2400 | 0.0000 | 1.0 |
67
+ | 0.0 | 1.42 | 2600 | 0.0000 | 1.0 |
68
+ | 0.0 | 1.53 | 2800 | 0.0000 | 1.0 |
69
+ | 0.0 | 1.64 | 3000 | 0.0000 | 1.0 |
70
+ | 0.0 | 1.75 | 3200 | 0.0000 | 1.0 |
71
+ | 0.0 | 1.85 | 3400 | 0.0000 | 1.0 |
72
+ | 0.0 | 1.96 | 3600 | 0.0000 | 1.0 |
73
 
74
 
75
  ### Framework versions