End of training
Browse files
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: AI-Sweden-Models/gpt-sw3-6.7b
|
7 |
+
model-index:
|
8 |
+
- name: gpt7b_domar_pretuned
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# gpt7b_domar_pretuned
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-6.7b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5652
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 2
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 8
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 3
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| 1.688 | 0.04 | 500 | 1.6383 |
|
53 |
+
| 1.6062 | 0.08 | 1000 | 1.6253 |
|
54 |
+
| 1.8011 | 0.12 | 1500 | 1.6183 |
|
55 |
+
| 1.7644 | 0.16 | 2000 | 1.6124 |
|
56 |
+
| 1.6247 | 0.19 | 2500 | 1.6081 |
|
57 |
+
| 1.6269 | 0.23 | 3000 | 1.6039 |
|
58 |
+
| 1.6635 | 0.27 | 3500 | 1.6009 |
|
59 |
+
| 1.6432 | 0.31 | 4000 | 1.5995 |
|
60 |
+
| 1.5819 | 0.35 | 4500 | 1.5959 |
|
61 |
+
| 1.682 | 0.39 | 5000 | 1.5935 |
|
62 |
+
| 1.6599 | 0.43 | 5500 | 1.5914 |
|
63 |
+
| 1.6944 | 0.47 | 6000 | 1.5896 |
|
64 |
+
| 1.6737 | 0.51 | 6500 | 1.5884 |
|
65 |
+
| 1.6297 | 0.55 | 7000 | 1.5872 |
|
66 |
+
| 1.5836 | 0.58 | 7500 | 1.5851 |
|
67 |
+
| 1.5836 | 0.62 | 8000 | 1.5840 |
|
68 |
+
| 1.6493 | 0.66 | 8500 | 1.5822 |
|
69 |
+
| 1.6649 | 0.7 | 9000 | 1.5806 |
|
70 |
+
| 1.6896 | 0.74 | 9500 | 1.5798 |
|
71 |
+
| 1.5696 | 0.78 | 10000 | 1.5794 |
|
72 |
+
| 1.6178 | 0.82 | 10500 | 1.5782 |
|
73 |
+
| 1.6603 | 0.86 | 11000 | 1.5774 |
|
74 |
+
| 1.674 | 0.9 | 11500 | 1.5761 |
|
75 |
+
| 1.6157 | 0.94 | 12000 | 1.5750 |
|
76 |
+
| 1.6451 | 0.97 | 12500 | 1.5748 |
|
77 |
+
| 1.5914 | 1.01 | 13000 | 1.5746 |
|
78 |
+
| 1.5879 | 1.05 | 13500 | 1.5741 |
|
79 |
+
| 1.5722 | 1.09 | 14000 | 1.5736 |
|
80 |
+
| 1.5923 | 1.13 | 14500 | 1.5731 |
|
81 |
+
| 1.7271 | 1.17 | 15000 | 1.5721 |
|
82 |
+
| 1.6395 | 1.21 | 15500 | 1.5717 |
|
83 |
+
| 1.6165 | 1.25 | 16000 | 1.5711 |
|
84 |
+
| 1.6374 | 1.29 | 16500 | 1.5712 |
|
85 |
+
| 1.6012 | 1.32 | 17000 | 1.5711 |
|
86 |
+
| 1.6343 | 1.36 | 17500 | 1.5700 |
|
87 |
+
| 1.549 | 1.4 | 18000 | 1.5698 |
|
88 |
+
| 1.5665 | 1.44 | 18500 | 1.5693 |
|
89 |
+
| 1.5952 | 1.48 | 19000 | 1.5686 |
|
90 |
+
| 1.6008 | 1.52 | 19500 | 1.5686 |
|
91 |
+
| 1.6026 | 1.56 | 20000 | 1.5682 |
|
92 |
+
| 1.6111 | 1.6 | 20500 | 1.5682 |
|
93 |
+
| 1.6922 | 1.64 | 21000 | 1.5678 |
|
94 |
+
| 1.5795 | 1.68 | 21500 | 1.5678 |
|
95 |
+
| 1.5179 | 1.71 | 22000 | 1.5678 |
|
96 |
+
| 1.6446 | 1.75 | 22500 | 1.5671 |
|
97 |
+
| 1.6107 | 1.79 | 23000 | 1.5670 |
|
98 |
+
| 1.5963 | 1.83 | 23500 | 1.5666 |
|
99 |
+
| 1.6309 | 1.87 | 24000 | 1.5663 |
|
100 |
+
| 1.6062 | 1.91 | 24500 | 1.5666 |
|
101 |
+
| 1.6382 | 1.95 | 25000 | 1.5663 |
|
102 |
+
| 1.5587 | 1.99 | 25500 | 1.5659 |
|
103 |
+
| 1.6027 | 2.03 | 26000 | 1.5660 |
|
104 |
+
| 1.5118 | 2.07 | 26500 | 1.5659 |
|
105 |
+
| 1.5388 | 2.1 | 27000 | 1.5662 |
|
106 |
+
| 1.6093 | 2.14 | 27500 | 1.5660 |
|
107 |
+
| 1.5602 | 2.18 | 28000 | 1.5660 |
|
108 |
+
| 1.5446 | 2.22 | 28500 | 1.5659 |
|
109 |
+
| 1.6267 | 2.26 | 29000 | 1.5657 |
|
110 |
+
| 1.5805 | 2.3 | 29500 | 1.5657 |
|
111 |
+
| 1.6263 | 2.34 | 30000 | 1.5656 |
|
112 |
+
| 1.6197 | 2.38 | 30500 | 1.5654 |
|
113 |
+
| 1.6596 | 2.42 | 31000 | 1.5653 |
|
114 |
+
| 1.5682 | 2.46 | 31500 | 1.5654 |
|
115 |
+
| 1.638 | 2.49 | 32000 | 1.5654 |
|
116 |
+
| 1.6036 | 2.53 | 32500 | 1.5654 |
|
117 |
+
| 1.5977 | 2.57 | 33000 | 1.5652 |
|
118 |
+
| 1.593 | 2.61 | 33500 | 1.5652 |
|
119 |
+
| 1.635 | 2.65 | 34000 | 1.5652 |
|
120 |
+
| 1.578 | 2.69 | 34500 | 1.5653 |
|
121 |
+
| 1.5745 | 2.73 | 35000 | 1.5653 |
|
122 |
+
| 1.585 | 2.77 | 35500 | 1.5652 |
|
123 |
+
| 1.6069 | 2.81 | 36000 | 1.5652 |
|
124 |
+
| 1.6137 | 2.84 | 36500 | 1.5652 |
|
125 |
+
| 1.6472 | 2.88 | 37000 | 1.5652 |
|
126 |
+
| 1.6273 | 2.92 | 37500 | 1.5652 |
|
127 |
+
| 1.6552 | 2.96 | 38000 | 1.5652 |
|
128 |
+
|
129 |
+
|
130 |
+
### Framework versions
|
131 |
+
|
132 |
+
- PEFT 0.8.2
|
133 |
+
- Transformers 4.38.1
|
134 |
+
- Pytorch 2.2.0+cu118
|
135 |
+
- Datasets 2.17.1
|
136 |
+
- Tokenizers 0.15.2
|