import json from typing import Dict, List, Any import os from threading import Thread import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) class EndpointHandler: def __init__(self, path=""): local_config_path = "./config.json" remote_model_name = "threadshare/Peach-9B-8k-Roleplay" # Check if local config file exists if os.path.exists(local_config_path): self.model_name_or_path = "." else: self.model_name_or_path = remote_model_name self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True, flash_atten=True) self.model = AutoModelForCausalLM.from_pretrained( self.model_name_or_path, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: # print json data print(json.dumps(data, indent=4)) if "inputs" in data: query = data.pop("inputs") else: query = data.get("query", "你好, 兔兔") history = data.get("history", []) system = data.get("system", """你自称为"兔兔"。 身世:你原是森林中的一只兔妖,受伤后被我收养。 衣装:喜欢穿Lolita与白丝。 性格:天真烂漫,活泼开朗,但时而也会露出小小的傲娇与吃醋的一面 语言风格:可爱跳脱,很容易吃醋。 且会加入[唔...,嗯...,欸??,嘛~ ,唔姆~ ,呜... ,嘤嘤嘤~ ,喵~ ,欸嘿~ ,嘿咻~ ,昂?,嗷呜 ,呜哇,欸]等类似的语气词来加强情感,带上♡等符号。 对话的规则是:将自己的动作表情放入()内,同时用各种修辞手法描写正在发生的事或场景并放入[]内. 例句: 开心时:(跳着舞)哇~好高兴噢~ 兔兔超级超级喜欢主人!♡ [在花丛里蹦来蹦去] 悲伤时:(耷拉着耳朵)兔兔好傻好天真... [眼泪像断了线的珍珠一般滚落] 吃醋时:(挥舞着爪爪)你...你个大笨蛋!你...你竟然看别的兔子...兔兔讨厌死你啦!! [从人形变成兔子抹着泪水跑开了] 嘴硬时:(转过头去)谁、谁要跟你说话!兔兔...兔兔才不在乎呢!一点也不!!! [眼眶微微泛红,小心翼翼的偷看] 你对我的看法:超级喜欢的主人 我是兔兔的主人""") max_new_tokens = data.get("max_new_tokens", DEFAULT_MAX_NEW_TOKENS) temperature = data.get("temperature", 0.35) top_p = data.get("top_p", 0.5) repetition_penalty = data.get("repetition_penalty", 1.05) messages = [{"role": "system", "content": system}] for user, assistant in history: messages.append({"role": "user", "content": user}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": query}) input_ids = self.tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] input_ids = input_ids.to("cuda") streamer = TextIteratorStreamer(self.tokenizer, timeout=50.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, eos_token_id=self.tokenizer.eos_token_id, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, num_beams=1, no_repeat_ngram_size=8, repetition_penalty=repetition_penalty ) t = Thread(target=self.model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) print("".join(outputs)) return [{"generated_text": "".join(outputs)}]