update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 1.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -42,17 +42,21 @@ The following hyperparameters were used during training:
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
-
|
51 |
-
| 1.7766 | 0.76 | 5000 | 1.8909 |
|
52 |
-
| 1.7572 | 1.52 | 10000 | 1.7809 |
|
53 |
-
| 1.7543 | 2.28 | 15000 | 1.8126 |
|
54 |
-
| 1.7273 | 3.05 | 20000 | 1.8048 |
|
55 |
-
| 1.7435 | 3.81 | 25000 | 1.7892 |
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.7088
|
20 |
+
- Accuracy: 0.1529
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 8
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
|
51 |
+
| 1.7766 | 0.76 | 5000 | 0.1331 | 1.8909 |
|
52 |
+
| 1.7572 | 1.52 | 10000 | 0.1331 | 1.7809 |
|
53 |
+
| 1.7543 | 2.28 | 15000 | 0.1031 | 1.8126 |
|
54 |
+
| 1.7273 | 3.05 | 20000 | 0.1331 | 1.8048 |
|
55 |
+
| 1.7435 | 3.81 | 25000 | 0.2675 | 1.7892 |
|
56 |
+
| 1.7606 | 4.99 | 30000 | 1.7848 | 0.3121 |
|
57 |
+
| 1.7546 | 5.82 | 35000 | 1.7737 | 0.3121 |
|
58 |
+
| 1.7417 | 6.65 | 40000 | 1.7699 | 0.3121 |
|
59 |
+
| 1.7007 | 7.48 | 45000 | 1.7088 | 0.1529 |
|
60 |
|
61 |
|
62 |
### Framework versions
|