File size: 3,470 Bytes
140e8c5 ea30ce0 140e8c5 ea30ce0 140e8c5 487290b e3cdada f5a25e5 ea30ce0 140e8c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: sparse_llama_7b_hf_refined_web_50p_2024-03-24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sparse_llama_7b_hf_refined_web_50p_2024-03-24
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1824 | 0.01 | 25 | 2.4333 |
| 2.1815 | 0.02 | 50 | 2.4313 |
| 2.2914 | 0.02 | 75 | 2.4244 |
| 2.2586 | 0.03 | 100 | 2.4192 |
| 2.3395 | 0.04 | 125 | 2.4108 |
| 2.1753 | 0.05 | 150 | 2.4039 |
| 2.1433 | 0.06 | 175 | 2.3947 |
| 2.3055 | 0.06 | 200 | 2.3859 |
| 2.2679 | 0.07 | 225 | 2.3842 |
| 2.2177 | 0.08 | 250 | 2.3817 |
| 2.1572 | 0.09 | 275 | 2.3830 |
| 2.1926 | 0.1 | 300 | 2.3829 |
| 2.2406 | 0.1 | 325 | 2.3817 |
| 2.21 | 0.11 | 350 | 2.3771 |
| 2.1296 | 0.12 | 375 | 2.3797 |
| 2.232 | 0.13 | 400 | 2.3764 |
| 2.2167 | 0.14 | 425 | 2.3746 |
| 2.18 | 0.14 | 450 | 2.3739 |
| 2.2508 | 0.15 | 475 | 2.3734 |
| 2.2584 | 0.16 | 500 | 2.3707 |
| 2.1665 | 0.17 | 525 | 2.3725 |
| 2.1627 | 0.18 | 550 | 2.3730 |
| 2.2769 | 0.18 | 575 | 2.3687 |
| 2.1621 | 0.19 | 600 | 2.3702 |
| 2.191 | 0.2 | 625 | 2.3696 |
| 2.274 | 0.21 | 650 | 2.3692 |
| 2.172 | 0.22 | 675 | 2.3720 |
| 2.1948 | 0.22 | 700 | 2.3704 |
| 2.2184 | 0.23 | 725 | 2.3699 |
| 2.1154 | 0.24 | 750 | 2.3693 |
| 2.1967 | 0.25 | 775 | 2.3699 |
| 2.2482 | 0.26 | 800 | 2.3668 |
| 2.1999 | 0.26 | 825 | 2.3679 |
| 2.155 | 0.27 | 850 | 2.3681 |
| 2.162 | 0.28 | 875 | 2.3651 |
| 2.1416 | 0.29 | 900 | 2.3676 |
| 2.3175 | 0.3 | 925 | 2.3686 |
| 2.2771 | 0.3 | 950 | 2.3667 |
| 2.2253 | 0.31 | 975 | 2.3639 |
| 2.1176 | 0.32 | 1000 | 2.3649 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
|