--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: sparse_llama_7b_hf_refined_web_50p_2024-03-24 results: [] --- # sparse_llama_7b_hf_refined_web_50p_2024-03-24 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 0 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1824 | 0.01 | 25 | 2.4333 | | 2.1815 | 0.02 | 50 | 2.4313 | | 2.2914 | 0.02 | 75 | 2.4244 | | 2.2586 | 0.03 | 100 | 2.4192 | | 2.3395 | 0.04 | 125 | 2.4108 | | 2.1753 | 0.05 | 150 | 2.4039 | | 2.1433 | 0.06 | 175 | 2.3947 | | 2.3055 | 0.06 | 200 | 2.3859 | | 2.2679 | 0.07 | 225 | 2.3842 | | 2.2177 | 0.08 | 250 | 2.3817 | | 2.1572 | 0.09 | 275 | 2.3830 | | 2.1926 | 0.1 | 300 | 2.3829 | | 2.2406 | 0.1 | 325 | 2.3817 | | 2.21 | 0.11 | 350 | 2.3771 | | 2.1296 | 0.12 | 375 | 2.3797 | | 2.232 | 0.13 | 400 | 2.3764 | | 2.2167 | 0.14 | 425 | 2.3746 | | 2.18 | 0.14 | 450 | 2.3739 | | 2.2508 | 0.15 | 475 | 2.3734 | | 2.2584 | 0.16 | 500 | 2.3707 | | 2.1665 | 0.17 | 525 | 2.3725 | | 2.1627 | 0.18 | 550 | 2.3730 | | 2.2769 | 0.18 | 575 | 2.3687 | | 2.1621 | 0.19 | 600 | 2.3702 | | 2.191 | 0.2 | 625 | 2.3696 | | 2.274 | 0.21 | 650 | 2.3692 | | 2.172 | 0.22 | 675 | 2.3720 | | 2.1948 | 0.22 | 700 | 2.3704 | | 2.2184 | 0.23 | 725 | 2.3699 | | 2.1154 | 0.24 | 750 | 2.3693 | | 2.1967 | 0.25 | 775 | 2.3699 | | 2.2482 | 0.26 | 800 | 2.3668 | | 2.1999 | 0.26 | 825 | 2.3679 | | 2.155 | 0.27 | 850 | 2.3681 | | 2.162 | 0.28 | 875 | 2.3651 | | 2.1416 | 0.29 | 900 | 2.3676 | | 2.3175 | 0.3 | 925 | 2.3686 | | 2.2771 | 0.3 | 950 | 2.3667 | | 2.2253 | 0.31 | 975 | 2.3639 | | 2.1176 | 0.32 | 1000 | 2.3649 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.2