--- license: apache-2.0 base_model: t5-3b tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-3b_rte_sp0_ar0 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.8995983935742972 --- # t5-3b_rte_sp0_ar0 This model is a fine-tuned version of [t5-3b](https://huggingface.co/t5-3b) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 2.4886 - Accuracy: 0.8996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7116 | 0.18 | 25 | 0.7078 | 0.4838 | | 0.615 | 0.36 | 50 | 0.4571 | 0.8484 | | 0.501 | 0.53 | 75 | 0.4176 | 0.8484 | | 0.337 | 0.71 | 100 | 0.4462 | 0.8809 | | 0.4199 | 0.89 | 125 | 0.4309 | 0.7942 | | 0.2477 | 1.07 | 150 | 0.4325 | 0.8881 | | 0.2253 | 1.25 | 175 | 0.4596 | 0.8845 | | 0.214 | 1.42 | 200 | 0.9106 | 0.8736 | | 0.2577 | 1.6 | 225 | 0.3652 | 0.9025 | | 0.1966 | 1.78 | 250 | 0.3645 | 0.9097 | | 0.2278 | 1.96 | 275 | 0.3337 | 0.9206 | | 0.1221 | 2.14 | 300 | 1.2373 | 0.8881 | | 0.3576 | 2.31 | 325 | 2.0514 | 0.8809 | | 0.6186 | 2.49 | 350 | 3.9886 | 0.8809 | | 1.0915 | 2.67 | 375 | 3.3403 | 0.8845 | | 0.321 | 2.85 | 400 | 4.6906 | 0.8989 | | 0.3969 | 3.02 | 425 | 1.2608 | 0.8736 | | 0.026 | 3.2 | 450 | 4.4563 | 0.8809 | | 0.0695 | 3.38 | 475 | 4.6858 | 0.8917 | | 0.7626 | 3.56 | 500 | 4.7502 | 0.8917 | | 0.2675 | 3.74 | 525 | 5.0576 | 0.9025 | | 0.82 | 3.91 | 550 | 3.6297 | 0.9025 | | 0.0011 | 4.09 | 575 | 5.7629 | 0.8989 | | 0.3 | 4.27 | 600 | 2.3117 | 0.9097 | | 0.0544 | 4.45 | 625 | 1.5657 | 0.9097 | | 0.2907 | 4.63 | 650 | 2.6475 | 0.9025 | | 0.2868 | 4.8 | 675 | 2.6720 | 0.8989 | | 0.3191 | 4.98 | 700 | 2.8372 | 0.8773 | | 0.0382 | 5.16 | 725 | 6.0565 | 0.9025 | | 0.0297 | 5.34 | 750 | 4.1639 | 0.8736 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0