File size: 3,442 Bytes
572a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32c360
572a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32c360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572a93e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_cola_dense_sp0_ar0
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: cola
      split: validation
      args: cola
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large_cola_dense_sp0_ar0

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7611
- Accuracy: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6121        | 0.05  | 25   | 0.6257          | 0.6913   |
| 0.4507        | 0.09  | 50   | 0.6018          | 0.6913   |
| 0.2862        | 0.14  | 75   | 0.5646          | 0.8006   |
| 0.5917        | 0.19  | 100  | 0.5203          | 0.7929   |
| 0.3317        | 0.23  | 125  | 0.4479          | 0.8236   |
| 0.3637        | 0.28  | 150  | 0.4355          | 0.8245   |
| 0.2844        | 0.33  | 175  | 0.5032          | 0.8245   |
| 0.3406        | 0.37  | 200  | 0.5102          | 0.8121   |
| 0.4321        | 0.42  | 225  | 0.4290          | 0.8150   |
| 0.5212        | 0.47  | 250  | 0.4134          | 0.8293   |
| 0.4152        | 0.51  | 275  | 0.5055          | 0.8207   |
| 0.453         | 0.56  | 300  | 0.3974          | 0.8265   |
| 0.3412        | 0.61  | 325  | 0.4409          | 0.8245   |
| 0.3251        | 0.65  | 350  | 0.4538          | 0.8255   |
| 0.3255        | 0.7   | 375  | 0.3817          | 0.8313   |
| 0.2671        | 0.75  | 400  | 0.4162          | 0.8255   |
| 0.3995        | 0.79  | 425  | 0.4150          | 0.8303   |
| 0.4005        | 0.84  | 450  | 0.4125          | 0.8303   |
| 0.2897        | 0.89  | 475  | 0.4895          | 0.8226   |
| 0.4079        | 0.93  | 500  | 0.4064          | 0.8351   |
| 0.2597        | 0.98  | 525  | 0.6631          | 0.8447   |
| 0.2189        | 1.03  | 550  | 0.5056          | 0.8236   |
| 0.329         | 1.07  | 575  | 6.1282          | 0.8284   |
| 0.44          | 1.12  | 600  | 0.5057          | 0.8380   |
| 0.164         | 1.17  | 625  | 0.5032          | 0.8313   |
| 0.2996        | 1.21  | 650  | 0.9884          | 0.8341   |
| 0.2425        | 1.26  | 675  | 0.5208          | 0.8418   |
| 0.1987        | 1.31  | 700  | 0.4573          | 0.8389   |
| 0.1581        | 1.36  | 725  | 1.1812          | 0.8150   |
| 0.4067        | 1.4   | 750  | 0.6437          | 0.8293   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.11.6