End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,31 +56,50 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 1
|
59 |
-
- distributed_type: multi-GPU
|
60 |
-
- num_devices: 2
|
61 |
-
- total_train_batch_size: 32
|
62 |
-
- total_eval_batch_size: 64
|
63 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
- lr_scheduler_type: linear
|
65 |
- lr_scheduler_warmup_steps: 20
|
66 |
-
-
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
-
- Transformers 4.
|
84 |
- Pytorch 2.0.1+cu117
|
85 |
-
- Datasets 2.
|
86 |
-
- Tokenizers 0.
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.859375
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 3.5699
|
36 |
+
- Accuracy: 0.8594
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 1
|
|
|
|
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_steps: 20
|
62 |
+
- training_steps: 750
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.6946 | 0.27 | 25 | 0.6855 | 0.5271 |
|
69 |
+
| 0.6855 | 0.54 | 50 | 0.6477 | 0.6354 |
|
70 |
+
| 0.5931 | 0.82 | 75 | 0.4711 | 0.7942 |
|
71 |
+
| 0.4206 | 1.09 | 100 | 0.5129 | 0.8159 |
|
72 |
+
| 0.4076 | 1.36 | 125 | 0.4682 | 0.8375 |
|
73 |
+
| 0.2787 | 1.63 | 150 | 0.4392 | 0.8484 |
|
74 |
+
| 0.2772 | 1.9 | 175 | 0.4809 | 0.8520 |
|
75 |
+
| 0.2214 | 2.17 | 200 | 0.8655 | 0.8448 |
|
76 |
+
| 0.1505 | 2.45 | 225 | 0.9392 | 0.8628 |
|
77 |
+
| 0.1502 | 2.72 | 250 | 1.2747 | 0.8664 |
|
78 |
+
| 0.1149 | 2.99 | 275 | 3.4780 | 0.8448 |
|
79 |
+
| 0.1074 | 3.26 | 300 | 2.8125 | 0.8484 |
|
80 |
+
| 0.1359 | 3.53 | 325 | 3.0765 | 0.8448 |
|
81 |
+
| 0.0577 | 3.8 | 350 | 3.1358 | 0.8592 |
|
82 |
+
| 0.0212 | 4.08 | 375 | 3.3075 | 0.8520 |
|
83 |
+
| 0.0251 | 4.35 | 400 | 5.9088 | 0.8736 |
|
84 |
+
| 0.0532 | 4.62 | 425 | 5.5508 | 0.8700 |
|
85 |
+
| 0.0229 | 4.89 | 450 | 4.6194 | 0.8700 |
|
86 |
+
| 0.0517 | 5.16 | 475 | 3.2927 | 0.8592 |
|
87 |
+
| 0.0182 | 5.43 | 500 | 4.5065 | 0.8773 |
|
88 |
+
| 0.2538 | 5.71 | 525 | 4.5460 | 0.8809 |
|
89 |
+
| 0.0162 | 5.98 | 550 | 4.2678 | 0.8700 |
|
90 |
+
| 0.0221 | 6.25 | 575 | 4.6268 | 0.8664 |
|
91 |
+
| 0.007 | 6.52 | 600 | 4.3411 | 0.8664 |
|
92 |
+
| 0.0038 | 6.79 | 625 | 5.0136 | 0.8664 |
|
93 |
+
| 0.036 | 7.07 | 650 | 5.6308 | 0.8736 |
|
94 |
+
| 0.0064 | 7.34 | 675 | 5.9644 | 0.8736 |
|
95 |
+
| 0.0037 | 7.61 | 700 | 5.3223 | 0.8736 |
|
96 |
+
| 0.0121 | 7.88 | 725 | 5.3345 | 0.8736 |
|
97 |
+
| 0.0251 | 8.15 | 750 | 4.9899 | 0.8736 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
101 |
|
102 |
+
- Transformers 4.34.1
|
103 |
- Pytorch 2.0.1+cu117
|
104 |
+
- Datasets 2.9.0
|
105 |
+
- Tokenizers 0.14.1
|