--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_rte_sp0_ar0 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.853515625 --- # t5-large_rte_sp0_ar0 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 53.5781 - Accuracy: 0.8535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 21.7037 | 1.09 | 50 | 50.2626 | 0.7365 | | 19.7544 | 2.17 | 100 | 48.4847 | 0.8375 | | 18.2538 | 3.26 | 150 | 48.2347 | 0.8484 | | 18.8494 | 4.35 | 200 | 48.5903 | 0.8195 | | 18.9237 | 5.43 | 250 | 48.2256 | 0.8520 | | 19.01 | 6.52 | 300 | 48.6390 | 0.8375 | | 18.8412 | 7.61 | 350 | 48.3700 | 0.8412 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.11.6