File size: 3,361 Bytes
ee6e49c c523844 ee6e49c c523844 ee6e49c c523844 ee6e49c c523844 42c48f0 ee6e49c 42c48f0 ee6e49c c523844 ee6e49c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: cc-by-4.0
base_model: NbAiLab/nb-bert-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: nb-bert-large-user-needs-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nb-bert-large-user-needs-v2
This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0173
- Accuracy: 0.8
- F1: 0.7945
- Precision: 0.7947
- Recall: 0.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 188 | 0.7673 | 0.696 | 0.6619 | 0.6566 | 0.696 |
| No log | 2.0 | 376 | 0.5713 | 0.7707 | 0.7423 | 0.7163 | 0.7707 |
| 0.6847 | 3.0 | 564 | 0.5849 | 0.7653 | 0.7547 | 0.7654 | 0.7653 |
| 0.6847 | 4.0 | 752 | 0.7731 | 0.7467 | 0.7254 | 0.7474 | 0.7467 |
| 0.6847 | 5.0 | 940 | 0.6056 | 0.7733 | 0.7740 | 0.7756 | 0.7733 |
| 0.4443 | 6.0 | 1128 | 0.7752 | 0.792 | 0.7877 | 0.7901 | 0.792 |
| 0.4443 | 7.0 | 1316 | 1.0173 | 0.8 | 0.7945 | 0.7947 | 0.8 |
| 0.2807 | 8.0 | 1504 | 1.1683 | 0.7813 | 0.7789 | 0.7783 | 0.7813 |
| 0.2807 | 9.0 | 1692 | 1.1886 | 0.7893 | 0.7825 | 0.7841 | 0.7893 |
| 0.2807 | 10.0 | 1880 | 1.3052 | 0.776 | 0.7695 | 0.7729 | 0.776 |
| 0.1282 | 11.0 | 2068 | 1.4641 | 0.784 | 0.7769 | 0.7804 | 0.784 |
| 0.1282 | 12.0 | 2256 | 1.5614 | 0.7813 | 0.7716 | 0.7871 | 0.7813 |
| 0.1282 | 13.0 | 2444 | 1.6424 | 0.784 | 0.7774 | 0.7804 | 0.784 |
| 0.0529 | 14.0 | 2632 | 1.7250 | 0.7813 | 0.7767 | 0.7770 | 0.7813 |
| 0.0529 | 15.0 | 2820 | 1.6061 | 0.8 | 0.7934 | 0.8058 | 0.8 |
| 0.0182 | 16.0 | 3008 | 1.7678 | 0.792 | 0.7854 | 0.7908 | 0.792 |
| 0.0182 | 17.0 | 3196 | 1.8226 | 0.7893 | 0.7834 | 0.7849 | 0.7893 |
| 0.0182 | 18.0 | 3384 | 1.8330 | 0.7973 | 0.7906 | 0.7936 | 0.7973 |
| 0.0061 | 19.0 | 3572 | 1.8423 | 0.7947 | 0.7879 | 0.7909 | 0.7947 |
| 0.0061 | 20.0 | 3760 | 1.8536 | 0.7973 | 0.7906 | 0.7936 | 0.7973 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|