File size: 3,361 Bytes
ee6e49c
c523844
 
ee6e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c523844
ee6e49c
c523844
 
 
 
 
ee6e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c523844
42c48f0
ee6e49c
 
 
 
42c48f0
ee6e49c
 
 
 
 
 
c523844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee6e49c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: cc-by-4.0
base_model: NbAiLab/nb-bert-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: nb-bert-large-user-needs-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nb-bert-large-user-needs-v2

This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0173
- Accuracy: 0.8
- F1: 0.7945
- Precision: 0.7947
- Recall: 0.8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 188  | 0.7673          | 0.696    | 0.6619 | 0.6566    | 0.696  |
| No log        | 2.0   | 376  | 0.5713          | 0.7707   | 0.7423 | 0.7163    | 0.7707 |
| 0.6847        | 3.0   | 564  | 0.5849          | 0.7653   | 0.7547 | 0.7654    | 0.7653 |
| 0.6847        | 4.0   | 752  | 0.7731          | 0.7467   | 0.7254 | 0.7474    | 0.7467 |
| 0.6847        | 5.0   | 940  | 0.6056          | 0.7733   | 0.7740 | 0.7756    | 0.7733 |
| 0.4443        | 6.0   | 1128 | 0.7752          | 0.792    | 0.7877 | 0.7901    | 0.792  |
| 0.4443        | 7.0   | 1316 | 1.0173          | 0.8      | 0.7945 | 0.7947    | 0.8    |
| 0.2807        | 8.0   | 1504 | 1.1683          | 0.7813   | 0.7789 | 0.7783    | 0.7813 |
| 0.2807        | 9.0   | 1692 | 1.1886          | 0.7893   | 0.7825 | 0.7841    | 0.7893 |
| 0.2807        | 10.0  | 1880 | 1.3052          | 0.776    | 0.7695 | 0.7729    | 0.776  |
| 0.1282        | 11.0  | 2068 | 1.4641          | 0.784    | 0.7769 | 0.7804    | 0.784  |
| 0.1282        | 12.0  | 2256 | 1.5614          | 0.7813   | 0.7716 | 0.7871    | 0.7813 |
| 0.1282        | 13.0  | 2444 | 1.6424          | 0.784    | 0.7774 | 0.7804    | 0.784  |
| 0.0529        | 14.0  | 2632 | 1.7250          | 0.7813   | 0.7767 | 0.7770    | 0.7813 |
| 0.0529        | 15.0  | 2820 | 1.6061          | 0.8      | 0.7934 | 0.8058    | 0.8    |
| 0.0182        | 16.0  | 3008 | 1.7678          | 0.792    | 0.7854 | 0.7908    | 0.792  |
| 0.0182        | 17.0  | 3196 | 1.8226          | 0.7893   | 0.7834 | 0.7849    | 0.7893 |
| 0.0182        | 18.0  | 3384 | 1.8330          | 0.7973   | 0.7906 | 0.7936    | 0.7973 |
| 0.0061        | 19.0  | 3572 | 1.8423          | 0.7947   | 0.7879 | 0.7909    | 0.7947 |
| 0.0061        | 20.0  | 3760 | 1.8536          | 0.7973   | 0.7906 | 0.7936    | 0.7973 |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.15.2