thuyentruong
commited on
Commit
·
9ff738a
1
Parent(s):
2ca7c8e
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.35 +/- 0.26
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0fbfab1871d775e4aabda814b56e0f0e5a1e6ab9551fcae29c43f881422d6bc
|
3 |
+
size 107817
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-0.
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f76c4a6bf40>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f76c4a66d80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1684155395297691875,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYbp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvATWvjlkgj7ip9M/S+3dPutZyL8SUaQ/X4KfP3F4yL9Uux0/nGwnv7pV/jzFMYG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]]",
|
38 |
+
"desired_goal": "[[-0.41800487 0.2546709 1.6535609 ]\n [ 0.43345103 -1.5652441 1.2837241 ]\n [ 1.2461661 -1.5661756 0.61613965]\n [-0.654001 0.03104674 -0.25233284]]",
|
39 |
+
"observation": "[[ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHKccPUEeq7xSmHc+w6GjPanxE71z3vI9o4SHvbOHzz2adJI+1agIPjndjjwy/6k9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03824531 -0.02088845 0.241792 ]\n [ 0.07989838 -0.03611914 0.11858835]\n [-0.06617095 0.10133304 0.28604585]\n [ 0.13345654 0.01743947 0.08300628]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOZ1kq8vp9b+UhpRSlIwBbJRLMowBdJRHQHOykDuBtk51fZQoaAZoCWgPQwg8ZwsIrcf4v5SGlFKUaBVLMmgWR0BzrQlWwNb1dX2UKGgGaAloD0MIObTIdr7f+L+UhpRSlGgVSzJoFkdAc6gEC/47BHV9lChoBmgJaA9DCLeZCvFI/Pe/lIaUUpRoFUsyaBZHQHOi8xTKkmB1fZQoaAZoCWgPQwiPcjCbAEP8v5SGlFKUaBVLMmgWR0BzukkD6nBMdX2UKGgGaAloD0MIHTuoxHXM+r+UhpRSlGgVSzJoFkdAc7TB5HEuQXV9lChoBmgJaA9DCA37PbFOlfq/lIaUUpRoFUsyaBZHQHOvvMr3Cbd1fZQoaAZoCWgPQwj4qL9eYQH5v5SGlFKUaBVLMmgWR0Bzqqt7rs0IdX2UKGgGaAloD0MI9+eiIeOxAMCUhpRSlGgVSzJoFkdAc8JO801qFnV9lChoBmgJaA9DCOfFia92VPm/lIaUUpRoFUsyaBZHQHO8yMUAT7F1fZQoaAZoCWgPQwjLD1zlCcT9v5SGlFKUaBVLMmgWR0Bzt8LronrqdX2UKGgGaAloD0MIMnctIR90AMCUhpRSlGgVSzJoFkdAc7Kx+8XenHV9lChoBmgJaA9DCE9ZTdcTXfe/lIaUUpRoFUsyaBZHQHPKIw/PgNx1fZQoaAZoCWgPQwgZxXJLq+H5v5SGlFKUaBVLMmgWR0BzxJw6ySmqdX2UKGgGaAloD0MI/3ivWpmw/L+UhpRSlGgVSzJoFkdAc7+WT5ftyHV9lChoBmgJaA9DCH5v05/9KADAlIaUUpRoFUsyaBZHQHO6hYvFm4B1fZQoaAZoCWgPQwiVnX5QF+n3v5SGlFKUaBVLMmgWR0Bz0gqc3EQ5dX2UKGgGaAloD0MIvTeGAOAY+b+UhpRSlGgVSzJoFkdAc8yFL39JjHV9lChoBmgJaA9DCN17uOS40/i/lIaUUpRoFUsyaBZHQHPHfwRXfZV1fZQoaAZoCWgPQwh4uB0aFiP9v5SGlFKUaBVLMmgWR0BzwnB3zMA4dX2UKGgGaAloD0MIKLnDJjLz/L+UhpRSlGgVSzJoFkdAc9p7Sy+pO3V9lChoBmgJaA9DCNlcNc8R+fO/lIaUUpRoFUsyaBZHQHPU9Gd7OVx1fZQoaAZoCWgPQwhEherm4m8BwJSGlFKUaBVLMmgWR0Bzz/LA57w8dX2UKGgGaAloD0MIDFwea0aG+r+UhpRSlGgVSzJoFkdAc8rjynUDuHV9lChoBmgJaA9DCDvj++JSFfS/lIaUUpRoFUsyaBZHQHPiqNVBD5V1fZQoaAZoCWgPQwgwEtpyLsX2v5SGlFKUaBVLMmgWR0Bz3SIyj59FdX2UKGgGaAloD0MIfLq6Y7GNAsCUhpRSlGgVSzJoFkdAc9gcUM5OrXV9lChoBmgJaA9DCDp5kQn4tfq/lIaUUpRoFUsyaBZHQHPTC3CsOoZ1fZQoaAZoCWgPQwhHBU62gbv+v5SGlFKUaBVLMmgWR0Bz7KwwCbMHdX2UKGgGaAloD0MIk6zD0VV6+L+UhpRSlGgVSzJoFkdAc+cqzZ6D5HV9lChoBmgJaA9DCBqIZTOH5Pe/lIaUUpRoFUsyaBZHQHPiKx9oexR1fZQoaAZoCWgPQwhN9WT+0bf3v5SGlFKUaBVLMmgWR0Bz3SBFuvU0dX2UKGgGaAloD0MI0Jfe/ly097+UhpRSlGgVSzJoFkdAc/nrfLs8gnV9lChoBmgJaA9DCIfddwyPPfi/lIaUUpRoFUsyaBZHQHP0aiGnGbV1fZQoaAZoCWgPQwghBU8hV6r3v5SGlFKUaBVLMmgWR0Bz72sJY1YRdX2UKGgGaAloD0MIqTC2EOTg97+UhpRSlGgVSzJoFkdAc+pgIhQm/nV9lChoBmgJaA9DCHcQO1PovPm/lIaUUpRoFUsyaBZHQHQHM0cfeUJ1fZQoaAZoCWgPQwj6CWe3lon3v5SGlFKUaBVLMmgWR0B0AbPRiPQwdX2UKGgGaAloD0MIPs+fNqoT+r+UhpRSlGgVSzJoFkdAc/y3/Pw/gXV9lChoBmgJaA9DCGDpfHiW4Pa/lIaUUpRoFUsyaBZHQHP3rORkmQd1fZQoaAZoCWgPQwim8KDZdS/3v5SGlFKUaBVLMmgWR0B0FXpX6qKhdX2UKGgGaAloD0MIrAK1GDxM+b+UhpRSlGgVSzJoFkdAdA/5/LDAJ3V9lChoBmgJaA9DCBkg0QSKGP6/lIaUUpRoFUsyaBZHQHQK+lTFVDN1fZQoaAZoCWgPQwhbsirCTQb5v5SGlFKUaBVLMmgWR0B0BfL1VYITdX2UKGgGaAloD0MIguFcwwyN+r+UhpRSlGgVSzJoFkdAdCREmY0EYHV9lChoBmgJaA9DCOLkfoeiQPu/lIaUUpRoFUsyaBZHQHQex4D9wWF1fZQoaAZoCWgPQwhFuMmoMoz4v5SGlFKUaBVLMmgWR0B0Gc0pEx7BdX2UKGgGaAloD0MIpU5AE2GD9L+UhpRSlGgVSzJoFkdAdBTGkep4r3V9lChoBmgJaA9DCGOXqN4aGPu/lIaUUpRoFUsyaBZHQHQyFCw8nu11fZQoaAZoCWgPQwgm/b0UHrT9v5SGlFKUaBVLMmgWR0B0LJRvWH1wdX2UKGgGaAloD0MIrg/rjVrh9r+UhpRSlGgVSzJoFkdAdCect5D7ZXV9lChoBmgJaA9DCOM2GsBbIPW/lIaUUpRoFUsyaBZHQHQik3GXHBF1fZQoaAZoCWgPQwhBSBYwgVv6v5SGlFKUaBVLMmgWR0B0QFJul41QdX2UKGgGaAloD0MID5pd91Zk/L+UhpRSlGgVSzJoFkdAdDrSxqwhXHV9lChoBmgJaA9DCFddh2pKcvy/lIaUUpRoFUsyaBZHQHQ11abF0gd1fZQoaAZoCWgPQwgrajANw8f3v5SGlFKUaBVLMmgWR0B0MMsOG0u2dX2UKGgGaAloD0MIlkG1wYmo+L+UhpRSlGgVSzJoFkdAdE5h+vyLAHV9lChoBmgJaA9DCNeKNse5zfy/lIaUUpRoFUsyaBZHQHRI5uVHFxZ1fZQoaAZoCWgPQwgPfXcrSzT5v5SGlFKUaBVLMmgWR0B0Q+iblRxcdX2UKGgGaAloD0MIHaopyTrc+L+UhpRSlGgVSzJoFkdAdD7eMAFPi3V9lChoBmgJaA9DCIYeMXpuYfm/lIaUUpRoFUsyaBZHQHRYEpd8iOh1fZQoaAZoCWgPQwiob5nTZfH5v5SGlFKUaBVLMmgWR0B0UozvZyuIdX2UKGgGaAloD0MIVb5nJEIj/r+UhpRSlGgVSzJoFkdAdE2HLRrrPnV9lChoBmgJaA9DCLmrV5HRAfO/lIaUUpRoFUsyaBZHQHRIdcfNiYt1fZQoaAZoCWgPQwjABkSIK6f5v5SGlFKUaBVLMmgWR0B0X/FS88LbdX2UKGgGaAloD0MICaaaWUvB+7+UhpRSlGgVSzJoFkdAdFpwXqJMx3V9lChoBmgJaA9DCNNqSNxjqfe/lIaUUpRoFUsyaBZHQHRVbZBcAzZ1fZQoaAZoCWgPQwifdCLBVHP9v5SGlFKUaBVLMmgWR0B0UF10T101dX2UKGgGaAloD0MIqIsUysLX97+UhpRSlGgVSzJoFkdAdGese4kNWnV9lChoBmgJaA9DCP6cgvxs5Pu/lIaUUpRoFUsyaBZHQHRiJgssg+11fZQoaAZoCWgPQwi4rwPnjGj2v5SGlFKUaBVLMmgWR0B0XSA7PppwdX2UKGgGaAloD0MIDw9h/DQu+L+UhpRSlGgVSzJoFkdAdFgOdXko4XV9lChoBmgJaA9DCMGpDyTv3Pq/lIaUUpRoFUsyaBZHQHRv402tMf11fZQoaAZoCWgPQwg/OQoQBfPzv5SGlFKUaBVLMmgWR0B0alxffGdadX2UKGgGaAloD0MIVvSHZp5c+b+UhpRSlGgVSzJoFkdAdGVWXTmW+3V9lChoBmgJaA9DCHAJwD+lyv6/lIaUUpRoFUsyaBZHQHRgSDmKZUl1fZQoaAZoCWgPQwgt0O6QYsD/v5SGlFKUaBVLMmgWR0B0d6NPxhDxdX2UKGgGaAloD0MIca5hhsYT+r+UhpRSlGgVSzJoFkdAdHIcQAdXDHV9lChoBmgJaA9DCHNjesIST/i/lIaUUpRoFUsyaBZHQHRtFnZkCmx1fZQoaAZoCWgPQwiFzmvsEhX+v5SGlFKUaBVLMmgWR0B0aAWBSUC8dX2UKGgGaAloD0MI4Qz+fjFb/7+UhpRSlGgVSzJoFkdAdH+wqRU3oHV9lChoBmgJaA9DCA4uHXOeMfa/lIaUUpRoFUsyaBZHQHR6KoESuhd1fZQoaAZoCWgPQwgF/YUeMXr7v5SGlFKUaBVLMmgWR0B0dSR+z+m4dX2UKGgGaAloD0MI6nb2lQdp+7+UhpRSlGgVSzJoFkdAdHATVlPJrHV9lChoBmgJaA9DCIOj5NU5BvS/lIaUUpRoFUsyaBZHQHSHUp3HJcR1fZQoaAZoCWgPQwi1+1WA7/b2v5SGlFKUaBVLMmgWR0B0gcvZh8YydX2UKGgGaAloD0MItTLhl/r5+b+UhpRSlGgVSzJoFkdAdHzGhEjPfXV9lChoBmgJaA9DCPJbdLLU+vy/lIaUUpRoFUsyaBZHQHR3teUpuuR1fZQoaAZoCWgPQwgomgewyC/5v5SGlFKUaBVLMmgWR0B0j1SvTw2EdX2UKGgGaAloD0MI+IpuvabH97+UhpRSlGgVSzJoFkdAdInP557gKnV9lChoBmgJaA9DCG3kuinltfS/lIaUUpRoFUsyaBZHQHSEy4SYgJV1fZQoaAZoCWgPQwgEq+rld1r+v5SGlFKUaBVLMmgWR0B0f7zDn/1hdX2UKGgGaAloD0MIZD4g0Jm0+b+UhpRSlGgVSzJoFkdAdJcvd/J/5XV9lChoBmgJaA9DCBzTE5Z4QPm/lIaUUpRoFUsyaBZHQHSRqFZgXuV1fZQoaAZoCWgPQwjJkGPrGcL3v5SGlFKUaBVLMmgWR0B0jKVjZteldX2UKGgGaAloD0MIQfFjzF1L9r+UhpRSlGgVSzJoFkdAdIeUliSaE3V9lChoBmgJaA9DCCv6QzNP7vu/lIaUUpRoFUsyaBZHQHSfSTMaCMB1fZQoaAZoCWgPQwgn28AdqFP1v5SGlFKUaBVLMmgWR0B0mcZEUj9odX2UKGgGaAloD0MIWYgOgSMB/7+UhpRSlGgVSzJoFkdAdJTCNCJGfHV9lChoBmgJaA9DCPFneLMGb/u/lIaUUpRoFUsyaBZHQHSPscdYGMZ1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 5000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56739a307d493c6dc56eda522eab51d23d37ce91bd0715deabdb68cb420448b2
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:961142b99e5e2d7fa0616f89468481d5ed096f4c904fd4403dea923c0c5f771b
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7257c8ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7257c83540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683617468692093730, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1zjDPnLcszwv3yE/1zjDPnLcszwv3yE/1zjDPnLcszwv3yE/1zjDPnLcszwv3yE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARcfdvmAOWr9pMrg/TtaMPlW/Fb4MFZE/rx5UPWQ3Cb9ps5O/4mzTPcGB/b7GSHo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXOMM+ctyzPC/fIT828lE8G78BPODuiTzXOMM+ctyzPC/fIT828lE8G78BPODuiTzXOMM+ctyzPC/fIT828lE8G78BPODuiTzXOMM+ctyzPC/fIT828lE8G78BPODuiTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38129303 0.0219557 0.63231176]\n [0.38129303 0.0219557 0.63231176]\n [0.38129303 0.0219557 0.63231176]\n [0.38129303 0.0219557 0.63231176]]", "desired_goal": "[[-0.43316093 -0.85178185 1.4390384 ]\n [ 0.27507252 -0.14623769 1.1334548 ]\n [ 0.05178707 -0.53600144 -1.1539127 ]\n [ 0.10323502 -0.49513057 0.97767293]]", "observation": "[[0.38129303 0.0219557 0.63231176 0.0128141 0.0079191 0.01683754]\n [0.38129303 0.0219557 0.63231176 0.0128141 0.0079191 0.01683754]\n [0.38129303 0.0219557 0.63231176 0.0128141 0.0079191 0.01683754]\n [0.38129303 0.0219557 0.63231176 0.0128141 0.0079191 0.01683754]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAikh3vT1LsLz3sLs9NwN9PWo3v73FI5A+OwAWvrsW673wfOs8bEFAvQNXT7wwPQs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06037191 -0.02152025 0.09164613]\n [ 0.06177064 -0.09336741 0.2815229 ]\n [-0.14648525 -0.11478945 0.0287461 ]\n [-0.04693739 -0.01265502 0.1359756 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG3+ismFNG8CUhpRSlIwBbJRLMowBdJRHQKUgYWldkax1fZQoaAZoCWgPQwgWE5uPa1MWwJSGlFKUaBVLMmgWR0ClICYGUwBYdX2UKGgGaAloD0MIQ3QIHAl0JMCUhpRSlGgVSzJoFkdApR/mFvhqCnV9lChoBmgJaA9DCEZB8Pj2bhDAlIaUUpRoFUsyaBZHQKUfoo0hvBJ1fZQoaAZoCWgPQwi7mGa619kSwJSGlFKUaBVLMmgWR0ClIdgbIcR2dX2UKGgGaAloD0MIxT2WPnRBD8CUhpRSlGgVSzJoFkdApSGdCiRGMHV9lChoBmgJaA9DCCOkbmdf+RPAlIaUUpRoFUsyaBZHQKUhXVWCEpR1fZQoaAZoCWgPQwhaaOc0C7QawJSGlFKUaBVLMmgWR0ClIRn27FsIdX2UKGgGaAloD0MIiXlW0oqfGsCUhpRSlGgVSzJoFkdApSNpjriVB3V9lChoBmgJaA9DCEoNbQA2gBLAlIaUUpRoFUsyaBZHQKUjLz19ORF1fZQoaAZoCWgPQwjDDmPS38sMwJSGlFKUaBVLMmgWR0ClIu9q+JxedX2UKGgGaAloD0MIzy7f+rBuEsCUhpRSlGgVSzJoFkdApSKrlijL0XV9lChoBmgJaA9DCMIVUKinPxPAlIaUUpRoFUsyaBZHQKUk7hWo3rF1fZQoaAZoCWgPQwiyvKseMJchwJSGlFKUaBVLMmgWR0ClJLJs41gqdX2UKGgGaAloD0MISOAPP/8NIMCUhpRSlGgVSzJoFkdApSRytihFmXV9lChoBmgJaA9DCC213m+0ww/AlIaUUpRoFUsyaBZHQKUkLylN1yN1fZQoaAZoCWgPQwikbmdfeYARwJSGlFKUaBVLMmgWR0ClJmsHbAUMdX2UKGgGaAloD0MIDAdCsoChJMCUhpRSlGgVSzJoFkdApSYvd43WF3V9lChoBmgJaA9DCD9W8NsQiyDAlIaUUpRoFUsyaBZHQKUl77MxGlR1fZQoaAZoCWgPQwhLW1zjMwkRwJSGlFKUaBVLMmgWR0ClJazND+irdX2UKGgGaAloD0MIOL72zJKgEcCUhpRSlGgVSzJoFkdApSgORxLkCHV9lChoBmgJaA9DCC+GcqJdRRDAlIaUUpRoFUsyaBZHQKUn0vbGm1p1fZQoaAZoCWgPQwgnS633G00VwJSGlFKUaBVLMmgWR0ClJ5NyxRl6dX2UKGgGaAloD0MIpibBG9KYEMCUhpRSlGgVSzJoFkdApSdPmV7hN3V9lChoBmgJaA9DCGmn5nKDMRLAlIaUUpRoFUsyaBZHQKUpdiSaEzx1fZQoaAZoCWgPQwhxx5v8Fn0OwJSGlFKUaBVLMmgWR0ClKTojnmq6dX2UKGgGaAloD0MI0ZMyqaENHsCUhpRSlGgVSzJoFkdApSj5sl9jPXV9lChoBmgJaA9DCFNBRdWvRBjAlIaUUpRoFUsyaBZHQKUotTCLuQZ1fZQoaAZoCWgPQwiOk8K8x5kHwJSGlFKUaBVLMmgWR0ClKlMrd30PdX2UKGgGaAloD0MIfPDapQ2nD8CUhpRSlGgVSzJoFkdApSoXB55Z83V9lChoBmgJaA9DCJ+T3je+FhHAlIaUUpRoFUsyaBZHQKUp1qUNayN1fZQoaAZoCWgPQwj8xWzJqkgOwJSGlFKUaBVLMmgWR0ClKZJ5u63BdX2UKGgGaAloD0MItvY+VYV2HsCUhpRSlGgVSzJoFkdApSsyebutwXV9lChoBmgJaA9DCPTCnQsj3RbAlIaUUpRoFUsyaBZHQKUq9o6jnFJ1fZQoaAZoCWgPQwjDZKpgVGIRwJSGlFKUaBVLMmgWR0ClKrYzzmOmdX2UKGgGaAloD0MI2o6pu7JrDcCUhpRSlGgVSzJoFkdApSpxw6ySm3V9lChoBmgJaA9DCKz/c5gvrw3AlIaUUpRoFUsyaBZHQKUsDlXiiqR1fZQoaAZoCWgPQwhd3bHYJiUTwJSGlFKUaBVLMmgWR0ClK9IePq9odX2UKGgGaAloD0MIHEKVmj2QE8CUhpRSlGgVSzJoFkdApSuR4SpR43V9lChoBmgJaA9DCL7dkhywWxTAlIaUUpRoFUsyaBZHQKUrTWfbsWx1fZQoaAZoCWgPQwi7XwX4bpMRwJSGlFKUaBVLMmgWR0ClLOgu7HyVdX2UKGgGaAloD0MI5POKpx4pGsCUhpRSlGgVSzJoFkdApSyr/jsD4nV9lChoBmgJaA9DCHhF8L+V3BvAlIaUUpRoFUsyaBZHQKUsa99MK1J1fZQoaAZoCWgPQwghI6DCEbQRwJSGlFKUaBVLMmgWR0ClLCdf1HvudX2UKGgGaAloD0MIePF+3H4JH8CUhpRSlGgVSzJoFkdApS3OBDohZHV9lChoBmgJaA9DCARUOIJUuhnAlIaUUpRoFUsyaBZHQKUtkb6xgRd1fZQoaAZoCWgPQwjBHhMpzeYRwJSGlFKUaBVLMmgWR0ClLVFvybx3dX2UKGgGaAloD0MI3PRnP1LEEcCUhpRSlGgVSzJoFkdApS0M/MW43HV9lChoBmgJaA9DCB5OYDqtSxjAlIaUUpRoFUsyaBZHQKUuopZOi351fZQoaAZoCWgPQwj9LmzNVr4XwJSGlFKUaBVLMmgWR0ClLmZSWJJodX2UKGgGaAloD0MIyenr+ZqlHcCUhpRSlGgVSzJoFkdApS4l1nuiOHV9lChoBmgJaA9DCIxqEVFMzh3AlIaUUpRoFUsyaBZHQKUt4aCL/CJ1fZQoaAZoCWgPQwhrYRbaOb0YwJSGlFKUaBVLMmgWR0ClL4X7DVH4dX2UKGgGaAloD0MIJlex+E3RE8CUhpRSlGgVSzJoFkdApS9Jt78ejnV9lChoBmgJaA9DCP7yyYrhyhLAlIaUUpRoFUsyaBZHQKUvCT4+KTB1fZQoaAZoCWgPQwgLf4Y3a3AQwJSGlFKUaBVLMmgWR0ClLsS9mHxjdX2UKGgGaAloD0MIQBaiQ+CoHcCUhpRSlGgVSzJoFkdApTBuNNrTIHV9lChoBmgJaA9DCIm1+BQA0xDAlIaUUpRoFUsyaBZHQKUwMgVXV9Z1fZQoaAZoCWgPQwihavRqgNIPwJSGlFKUaBVLMmgWR0ClL/Gl67d0dX2UKGgGaAloD0MIqBjnb0KBEsCUhpRSlGgVSzJoFkdApS+tRFZxJnV9lChoBmgJaA9DCC3t1Fxu4CHAlIaUUpRoFUsyaBZHQKUxUCFK02N1fZQoaAZoCWgPQwhBRkCFI+gRwJSGlFKUaBVLMmgWR0ClMRPs7dSEdX2UKGgGaAloD0MIKlYNwtw+FMCUhpRSlGgVSzJoFkdApTDTfLs8gnV9lChoBmgJaA9DCBAiGXJsJSTAlIaUUpRoFUsyaBZHQKUwjxaPjn51fZQoaAZoCWgPQwjGGFjH8aMMwJSGlFKUaBVLMmgWR0ClMi2KVII4dX2UKGgGaAloD0MIgJnv4CeOFMCUhpRSlGgVSzJoFkdApTHxYq5LAnV9lChoBmgJaA9DCJgvL8A+ChjAlIaUUpRoFUsyaBZHQKUxsPPLPld1fZQoaAZoCWgPQwip2JjXEWcWwJSGlFKUaBVLMmgWR0ClMWx1xKg7dX2UKGgGaAloD0MIf0xr09j+DcCUhpRSlGgVSzJoFkdApTMObLEDQ3V9lChoBmgJaA9DCDPFHAQd/RPAlIaUUpRoFUsyaBZHQKUy0j7hvR91fZQoaAZoCWgPQwjVWpiFdk4RwJSGlFKUaBVLMmgWR0ClMpHSfDk3dX2UKGgGaAloD0MIrp0oCYkEFcCUhpRSlGgVSzJoFkdApTJNZHNHH3V9lChoBmgJaA9DCJNWfEPh8xPAlIaUUpRoFUsyaBZHQKUz7KZDzAh1fZQoaAZoCWgPQwix3T1A94UNwJSGlFKUaBVLMmgWR0ClM7BppN9IdX2UKGgGaAloD0MIeJs3TgozE8CUhpRSlGgVSzJoFkdApTNwBFNL13V9lChoBmgJaA9DCH7Er1jDNR7AlIaUUpRoFUsyaBZHQKUzK5H3Del1fZQoaAZoCWgPQwjsMCb9vWQXwJSGlFKUaBVLMmgWR0ClNM75Ec81dX2UKGgGaAloD0MIluoCXmaYDcCUhpRSlGgVSzJoFkdApTSSuloDgnV9lChoBmgJaA9DCOVEuwopzxLAlIaUUpRoFUsyaBZHQKU0UkM1CPZ1fZQoaAZoCWgPQwj/s+bHX7oNwJSGlFKUaBVLMmgWR0ClNA3VCojwdX2UKGgGaAloD0MIqkNuhhtQE8CUhpRSlGgVSzJoFkdApTWtNL127nV9lChoBmgJaA9DCFVP5h99IxHAlIaUUpRoFUsyaBZHQKU1cRA8jiZ1fZQoaAZoCWgPQwhaoN0hxSAawJSGlFKUaBVLMmgWR0ClNTDyFwkxdX2UKGgGaAloD0MIZ9e9FYn5GMCUhpRSlGgVSzJoFkdApTTsl3QlbHV9lChoBmgJaA9DCNvebkkOeBbAlIaUUpRoFUsyaBZHQKU2hYhdMTN1fZQoaAZoCWgPQwiUE+0qpEwfwJSGlFKUaBVLMmgWR0ClNklUIcBEdX2UKGgGaAloD0MILQq7KHqgDMCUhpRSlGgVSzJoFkdApTYJiVjZtnV9lChoBmgJaA9DCPORlPQw1BLAlIaUUpRoFUsyaBZHQKU1xV0cOsl1fZQoaAZoCWgPQwgce/ZcphYVwJSGlFKUaBVLMmgWR0ClN2YYR/VidX2UKGgGaAloD0MIRgckYd9+HsCUhpRSlGgVSzJoFkdApTcp1klNUXV9lChoBmgJaA9DCGovou2Y2grAlIaUUpRoFUsyaBZHQKU26V4X40x1fZQoaAZoCWgPQwgxfa8hOP4ZwJSGlFKUaBVLMmgWR0ClNqTY/Vy4dX2UKGgGaAloD0MIaJdvfVi/GcCUhpRSlGgVSzJoFkdApThCDsdDIHV9lChoBmgJaA9DCPiKbr2m1xXAlIaUUpRoFUsyaBZHQKU4BfaYeDF1fZQoaAZoCWgPQwhCP1OvW4QQwJSGlFKUaBVLMmgWR0ClN8WGqPwNdX2UKGgGaAloD0MIMjogCfv2FMCUhpRSlGgVSzJoFkdApTeBC2MKkXV9lChoBmgJaA9DCGMmUS/4RBvAlIaUUpRoFUsyaBZHQKU5H/lyR0V1fZQoaAZoCWgPQwhy3CkdrI8ZwJSGlFKUaBVLMmgWR0ClOOO8TSLJdX2UKGgGaAloD0MIfxZLkXzlDcCUhpRSlGgVSzJoFkdApTijSPU8WHV9lChoBmgJaA9DCKOx9ne2NxHAlIaUUpRoFUsyaBZHQKU4XwXqJMx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f76c4a6bf40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f76c4a66d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684155395297691875, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYbp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvATWvjlkgj7ip9M/S+3dPutZyL8SUaQ/X4KfP3F4yL9Uux0/nGwnv7pV/jzFMYG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]\n [ 0.24387504 -0.04494498 0.4564299 ]]", "desired_goal": "[[-0.41800487 0.2546709 1.6535609 ]\n [ 0.43345103 -1.5652441 1.2837241 ]\n [ 1.2461661 -1.5661756 0.61613965]\n [-0.654001 0.03104674 -0.25233284]]", "observation": "[[ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]\n [ 0.24387504 -0.04494498 0.4564299 0.00103972 -0.00661356 0.01505355]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHKccPUEeq7xSmHc+w6GjPanxE71z3vI9o4SHvbOHzz2adJI+1agIPjndjjwy/6k9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03824531 -0.02088845 0.241792 ]\n [ 0.07989838 -0.03611914 0.11858835]\n [-0.06617095 0.10133304 0.28604585]\n [ 0.13345654 0.01743947 0.08300628]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOZ1kq8vp9b+UhpRSlIwBbJRLMowBdJRHQHOykDuBtk51fZQoaAZoCWgPQwg8ZwsIrcf4v5SGlFKUaBVLMmgWR0BzrQlWwNb1dX2UKGgGaAloD0MIObTIdr7f+L+UhpRSlGgVSzJoFkdAc6gEC/47BHV9lChoBmgJaA9DCLeZCvFI/Pe/lIaUUpRoFUsyaBZHQHOi8xTKkmB1fZQoaAZoCWgPQwiPcjCbAEP8v5SGlFKUaBVLMmgWR0BzukkD6nBMdX2UKGgGaAloD0MIHTuoxHXM+r+UhpRSlGgVSzJoFkdAc7TB5HEuQXV9lChoBmgJaA9DCA37PbFOlfq/lIaUUpRoFUsyaBZHQHOvvMr3Cbd1fZQoaAZoCWgPQwj4qL9eYQH5v5SGlFKUaBVLMmgWR0Bzqqt7rs0IdX2UKGgGaAloD0MI9+eiIeOxAMCUhpRSlGgVSzJoFkdAc8JO801qFnV9lChoBmgJaA9DCOfFia92VPm/lIaUUpRoFUsyaBZHQHO8yMUAT7F1fZQoaAZoCWgPQwjLD1zlCcT9v5SGlFKUaBVLMmgWR0Bzt8LronrqdX2UKGgGaAloD0MIMnctIR90AMCUhpRSlGgVSzJoFkdAc7Kx+8XenHV9lChoBmgJaA9DCE9ZTdcTXfe/lIaUUpRoFUsyaBZHQHPKIw/PgNx1fZQoaAZoCWgPQwgZxXJLq+H5v5SGlFKUaBVLMmgWR0BzxJw6ySmqdX2UKGgGaAloD0MI/3ivWpmw/L+UhpRSlGgVSzJoFkdAc7+WT5ftyHV9lChoBmgJaA9DCH5v05/9KADAlIaUUpRoFUsyaBZHQHO6hYvFm4B1fZQoaAZoCWgPQwiVnX5QF+n3v5SGlFKUaBVLMmgWR0Bz0gqc3EQ5dX2UKGgGaAloD0MIvTeGAOAY+b+UhpRSlGgVSzJoFkdAc8yFL39JjHV9lChoBmgJaA9DCN17uOS40/i/lIaUUpRoFUsyaBZHQHPHfwRXfZV1fZQoaAZoCWgPQwh4uB0aFiP9v5SGlFKUaBVLMmgWR0BzwnB3zMA4dX2UKGgGaAloD0MIKLnDJjLz/L+UhpRSlGgVSzJoFkdAc9p7Sy+pO3V9lChoBmgJaA9DCNlcNc8R+fO/lIaUUpRoFUsyaBZHQHPU9Gd7OVx1fZQoaAZoCWgPQwhEherm4m8BwJSGlFKUaBVLMmgWR0Bzz/LA57w8dX2UKGgGaAloD0MIDFwea0aG+r+UhpRSlGgVSzJoFkdAc8rjynUDuHV9lChoBmgJaA9DCDvj++JSFfS/lIaUUpRoFUsyaBZHQHPiqNVBD5V1fZQoaAZoCWgPQwgwEtpyLsX2v5SGlFKUaBVLMmgWR0Bz3SIyj59FdX2UKGgGaAloD0MIfLq6Y7GNAsCUhpRSlGgVSzJoFkdAc9gcUM5OrXV9lChoBmgJaA9DCDp5kQn4tfq/lIaUUpRoFUsyaBZHQHPTC3CsOoZ1fZQoaAZoCWgPQwhHBU62gbv+v5SGlFKUaBVLMmgWR0Bz7KwwCbMHdX2UKGgGaAloD0MIk6zD0VV6+L+UhpRSlGgVSzJoFkdAc+cqzZ6D5HV9lChoBmgJaA9DCBqIZTOH5Pe/lIaUUpRoFUsyaBZHQHPiKx9oexR1fZQoaAZoCWgPQwhN9WT+0bf3v5SGlFKUaBVLMmgWR0Bz3SBFuvU0dX2UKGgGaAloD0MI0Jfe/ly097+UhpRSlGgVSzJoFkdAc/nrfLs8gnV9lChoBmgJaA9DCIfddwyPPfi/lIaUUpRoFUsyaBZHQHP0aiGnGbV1fZQoaAZoCWgPQwghBU8hV6r3v5SGlFKUaBVLMmgWR0Bz72sJY1YRdX2UKGgGaAloD0MIqTC2EOTg97+UhpRSlGgVSzJoFkdAc+pgIhQm/nV9lChoBmgJaA9DCHcQO1PovPm/lIaUUpRoFUsyaBZHQHQHM0cfeUJ1fZQoaAZoCWgPQwj6CWe3lon3v5SGlFKUaBVLMmgWR0B0AbPRiPQwdX2UKGgGaAloD0MIPs+fNqoT+r+UhpRSlGgVSzJoFkdAc/y3/Pw/gXV9lChoBmgJaA9DCGDpfHiW4Pa/lIaUUpRoFUsyaBZHQHP3rORkmQd1fZQoaAZoCWgPQwim8KDZdS/3v5SGlFKUaBVLMmgWR0B0FXpX6qKhdX2UKGgGaAloD0MIrAK1GDxM+b+UhpRSlGgVSzJoFkdAdA/5/LDAJ3V9lChoBmgJaA9DCBkg0QSKGP6/lIaUUpRoFUsyaBZHQHQK+lTFVDN1fZQoaAZoCWgPQwhbsirCTQb5v5SGlFKUaBVLMmgWR0B0BfL1VYITdX2UKGgGaAloD0MIguFcwwyN+r+UhpRSlGgVSzJoFkdAdCREmY0EYHV9lChoBmgJaA9DCOLkfoeiQPu/lIaUUpRoFUsyaBZHQHQex4D9wWF1fZQoaAZoCWgPQwhFuMmoMoz4v5SGlFKUaBVLMmgWR0B0Gc0pEx7BdX2UKGgGaAloD0MIpU5AE2GD9L+UhpRSlGgVSzJoFkdAdBTGkep4r3V9lChoBmgJaA9DCGOXqN4aGPu/lIaUUpRoFUsyaBZHQHQyFCw8nu11fZQoaAZoCWgPQwgm/b0UHrT9v5SGlFKUaBVLMmgWR0B0LJRvWH1wdX2UKGgGaAloD0MIrg/rjVrh9r+UhpRSlGgVSzJoFkdAdCect5D7ZXV9lChoBmgJaA9DCOM2GsBbIPW/lIaUUpRoFUsyaBZHQHQik3GXHBF1fZQoaAZoCWgPQwhBSBYwgVv6v5SGlFKUaBVLMmgWR0B0QFJul41QdX2UKGgGaAloD0MID5pd91Zk/L+UhpRSlGgVSzJoFkdAdDrSxqwhXHV9lChoBmgJaA9DCFddh2pKcvy/lIaUUpRoFUsyaBZHQHQ11abF0gd1fZQoaAZoCWgPQwgrajANw8f3v5SGlFKUaBVLMmgWR0B0MMsOG0u2dX2UKGgGaAloD0MIlkG1wYmo+L+UhpRSlGgVSzJoFkdAdE5h+vyLAHV9lChoBmgJaA9DCNeKNse5zfy/lIaUUpRoFUsyaBZHQHRI5uVHFxZ1fZQoaAZoCWgPQwgPfXcrSzT5v5SGlFKUaBVLMmgWR0B0Q+iblRxcdX2UKGgGaAloD0MIHaopyTrc+L+UhpRSlGgVSzJoFkdAdD7eMAFPi3V9lChoBmgJaA9DCIYeMXpuYfm/lIaUUpRoFUsyaBZHQHRYEpd8iOh1fZQoaAZoCWgPQwiob5nTZfH5v5SGlFKUaBVLMmgWR0B0UozvZyuIdX2UKGgGaAloD0MIVb5nJEIj/r+UhpRSlGgVSzJoFkdAdE2HLRrrPnV9lChoBmgJaA9DCLmrV5HRAfO/lIaUUpRoFUsyaBZHQHRIdcfNiYt1fZQoaAZoCWgPQwjABkSIK6f5v5SGlFKUaBVLMmgWR0B0X/FS88LbdX2UKGgGaAloD0MICaaaWUvB+7+UhpRSlGgVSzJoFkdAdFpwXqJMx3V9lChoBmgJaA9DCNNqSNxjqfe/lIaUUpRoFUsyaBZHQHRVbZBcAzZ1fZQoaAZoCWgPQwifdCLBVHP9v5SGlFKUaBVLMmgWR0B0UF10T101dX2UKGgGaAloD0MIqIsUysLX97+UhpRSlGgVSzJoFkdAdGese4kNWnV9lChoBmgJaA9DCP6cgvxs5Pu/lIaUUpRoFUsyaBZHQHRiJgssg+11fZQoaAZoCWgPQwi4rwPnjGj2v5SGlFKUaBVLMmgWR0B0XSA7PppwdX2UKGgGaAloD0MIDw9h/DQu+L+UhpRSlGgVSzJoFkdAdFgOdXko4XV9lChoBmgJaA9DCMGpDyTv3Pq/lIaUUpRoFUsyaBZHQHRv402tMf11fZQoaAZoCWgPQwg/OQoQBfPzv5SGlFKUaBVLMmgWR0B0alxffGdadX2UKGgGaAloD0MIVvSHZp5c+b+UhpRSlGgVSzJoFkdAdGVWXTmW+3V9lChoBmgJaA9DCHAJwD+lyv6/lIaUUpRoFUsyaBZHQHRgSDmKZUl1fZQoaAZoCWgPQwgt0O6QYsD/v5SGlFKUaBVLMmgWR0B0d6NPxhDxdX2UKGgGaAloD0MIca5hhsYT+r+UhpRSlGgVSzJoFkdAdHIcQAdXDHV9lChoBmgJaA9DCHNjesIST/i/lIaUUpRoFUsyaBZHQHRtFnZkCmx1fZQoaAZoCWgPQwiFzmvsEhX+v5SGlFKUaBVLMmgWR0B0aAWBSUC8dX2UKGgGaAloD0MI4Qz+fjFb/7+UhpRSlGgVSzJoFkdAdH+wqRU3oHV9lChoBmgJaA9DCA4uHXOeMfa/lIaUUpRoFUsyaBZHQHR6KoESuhd1fZQoaAZoCWgPQwgF/YUeMXr7v5SGlFKUaBVLMmgWR0B0dSR+z+m4dX2UKGgGaAloD0MI6nb2lQdp+7+UhpRSlGgVSzJoFkdAdHATVlPJrHV9lChoBmgJaA9DCIOj5NU5BvS/lIaUUpRoFUsyaBZHQHSHUp3HJcR1fZQoaAZoCWgPQwi1+1WA7/b2v5SGlFKUaBVLMmgWR0B0gcvZh8YydX2UKGgGaAloD0MItTLhl/r5+b+UhpRSlGgVSzJoFkdAdHzGhEjPfXV9lChoBmgJaA9DCPJbdLLU+vy/lIaUUpRoFUsyaBZHQHR3teUpuuR1fZQoaAZoCWgPQwgomgewyC/5v5SGlFKUaBVLMmgWR0B0j1SvTw2EdX2UKGgGaAloD0MI+IpuvabH97+UhpRSlGgVSzJoFkdAdInP557gKnV9lChoBmgJaA9DCG3kuinltfS/lIaUUpRoFUsyaBZHQHSEy4SYgJV1fZQoaAZoCWgPQwgEq+rld1r+v5SGlFKUaBVLMmgWR0B0f7zDn/1hdX2UKGgGaAloD0MIZD4g0Jm0+b+UhpRSlGgVSzJoFkdAdJcvd/J/5XV9lChoBmgJaA9DCBzTE5Z4QPm/lIaUUpRoFUsyaBZHQHSRqFZgXuV1fZQoaAZoCWgPQwjJkGPrGcL3v5SGlFKUaBVLMmgWR0B0jKVjZteldX2UKGgGaAloD0MIQfFjzF1L9r+UhpRSlGgVSzJoFkdAdIeUliSaE3V9lChoBmgJaA9DCCv6QzNP7vu/lIaUUpRoFUsyaBZHQHSfSTMaCMB1fZQoaAZoCWgPQwgn28AdqFP1v5SGlFKUaBVLMmgWR0B0mcZEUj9odX2UKGgGaAloD0MIWYgOgSMB/7+UhpRSlGgVSzJoFkdAdJTCNCJGfHV9lChoBmgJaA9DCPFneLMGb/u/lIaUUpRoFUsyaBZHQHSPscdYGMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3481232822989113, "std_reward": 0.25766949720294824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-15T13:05:57.409099"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a10122092eda8ad28a41154a2b0e5bbe351671e31015b5c5968e7dd933cb40b
|
3 |
size 2387
|