--- language: - zh - en ---

ChatYuan-7B-merge

bilibili     github     kaggle     huggingface

Based on LLAMA's latest Chinese-English dialogue language large model


You can see more detail in this [repo](https://github.com/clue-ai/ChatYuan-7B)
## How to use ```python from transformers import LlamaForCausalLM, AutoTokenizer import torch ckpt = "tiansz/ChatYuan-7B-merge" device = torch.device('cuda') model = LlamaForCausalLM.from_pretrained(ckpt) tokenizer = AutoTokenizer.from_pretrained(ckpt) def answer(prompt): prompt = f"用户:{prompt}\n小元:" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generate_ids = model.generate(input_ids, max_new_tokens=1024, do_sample = True, temperature = 0.7) output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] response = output[len(prompt):] return response result = answer("你好") print(result) ```
int8: ```python from transformers import LlamaForCausalLM, AutoTokenizer import torch ckpt = "tiansz/ChatYuan-7B-merge" device = torch.device('cuda') max_memory = f'{int(torch.cuda.mem_get_info()[0]/1024**3)-1}GB' n_gpus = torch.cuda.device_count() max_memory = {i: max_memory for i in range(n_gpus)} model = LlamaForCausalLM.from_pretrained(ckpt, device_map='auto', load_in_8bit=True, max_memory=max_memory) tokenizer = AutoTokenizer.from_pretrained(ckpt) def answer(prompt): prompt = f"用户:{prompt}\n小元:" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generate_ids = model.generate(input_ids, max_new_tokens=1024, do_sample = True, temperature = 0.7) output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] response = output[len(prompt):] return response result = answer("你好") print(result) ```
## License - [ChatYuan-7B](https://github.com/clue-ai/ChatYuan-7B) - [llama](https://github.com/facebookresearch/llama)