|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: training1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# training1 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1739 |
|
- Accuracy: 0.9431 |
|
- F1: 0.8115 |
|
- Precision: 0.8659 |
|
- Recall: 0.7636 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 9.946303722432942e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6954 | 1.0 | 61 | 0.6728 | 0.6127 | 0.1189 | 0.0936 | 0.1629 | |
|
| 0.5462 | 2.0 | 122 | 0.3988 | 0.8683 | 0.4352 | 0.6972 | 0.3163 | |
|
| 0.3711 | 3.0 | 183 | 0.3401 | 0.8765 | 0.4703 | 0.7535 | 0.3419 | |
|
| 0.3269 | 4.0 | 244 | 0.3175 | 0.8883 | 0.4785 | 0.9524 | 0.3195 | |
|
| 0.2899 | 5.0 | 305 | 0.2781 | 0.9042 | 0.5961 | 0.92 | 0.4409 | |
|
| 0.2568 | 6.0 | 366 | 0.2576 | 0.9144 | 0.6745 | 0.865 | 0.5527 | |
|
| 0.2176 | 7.0 | 427 | 0.2305 | 0.9242 | 0.7376 | 0.8287 | 0.6645 | |
|
| 0.1879 | 8.0 | 488 | 0.2014 | 0.9329 | 0.7579 | 0.8991 | 0.6550 | |
|
| 0.1541 | 9.0 | 549 | 0.2002 | 0.9329 | 0.7842 | 0.8095 | 0.7604 | |
|
| 0.1275 | 10.0 | 610 | 0.1739 | 0.9431 | 0.8115 | 0.8659 | 0.7636 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|