--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: training1 results: [] --- # training1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - Accuracy: 0.9431 - F1: 0.8115 - Precision: 0.8659 - Recall: 0.7636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.946303722432942e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6954 | 1.0 | 61 | 0.6728 | 0.6127 | 0.1189 | 0.0936 | 0.1629 | | 0.5462 | 2.0 | 122 | 0.3988 | 0.8683 | 0.4352 | 0.6972 | 0.3163 | | 0.3711 | 3.0 | 183 | 0.3401 | 0.8765 | 0.4703 | 0.7535 | 0.3419 | | 0.3269 | 4.0 | 244 | 0.3175 | 0.8883 | 0.4785 | 0.9524 | 0.3195 | | 0.2899 | 5.0 | 305 | 0.2781 | 0.9042 | 0.5961 | 0.92 | 0.4409 | | 0.2568 | 6.0 | 366 | 0.2576 | 0.9144 | 0.6745 | 0.865 | 0.5527 | | 0.2176 | 7.0 | 427 | 0.2305 | 0.9242 | 0.7376 | 0.8287 | 0.6645 | | 0.1879 | 8.0 | 488 | 0.2014 | 0.9329 | 0.7579 | 0.8991 | 0.6550 | | 0.1541 | 9.0 | 549 | 0.2002 | 0.9329 | 0.7842 | 0.8095 | 0.7604 | | 0.1275 | 10.0 | 610 | 0.1739 | 0.9431 | 0.8115 | 0.8659 | 0.7636 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1