Nguyen Tien
commited on
Commit
·
0881b5a
1
Parent(s):
233d8e2
Update modeling_mpt.py
Browse files- modeling_mpt.py +121 -99
modeling_mpt.py
CHANGED
@@ -1,69 +1,57 @@
|
|
1 |
"""A simple, flexible implementation of a GPT model.
|
2 |
-
|
3 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
-
from typing import
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
-
from transformers import PreTrainedModel,
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
from .attention import attn_bias_shape, build_attn_bias
|
14 |
from .blocks import MPTBlock
|
15 |
-
from .custom_embedding import SharedEmbedding
|
16 |
-
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
17 |
-
from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
|
18 |
-
from .ffn import MPTMLP as MPTMLP
|
19 |
-
from .ffn import build_ffn as build_ffn
|
20 |
from .norm import NORM_CLASS_REGISTRY
|
21 |
from .configuration_mpt import MPTConfig
|
22 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
23 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
24 |
from .meta_init_context import init_empty_weights
|
25 |
-
from .param_init_fns import
|
26 |
-
|
27 |
-
from .flash_attn_triton import flash_attn_func as flash_attn_func
|
28 |
-
except:
|
29 |
-
pass
|
30 |
-
import logging
|
31 |
-
log = logging.getLogger(__name__)
|
32 |
|
33 |
class MPTPreTrainedModel(PreTrainedModel):
|
34 |
config_class = MPTConfig
|
35 |
base_model_prefix = 'model'
|
36 |
-
_no_split_modules = [
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
class MPTModel(MPTPreTrainedModel):
|
39 |
|
40 |
def __init__(self, config: MPTConfig):
|
41 |
config._validate_config()
|
42 |
super().__init__(config)
|
|
|
43 |
self.attn_impl = config.attn_config['attn_impl']
|
44 |
self.prefix_lm = config.attn_config['prefix_lm']
|
45 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
46 |
self.alibi = config.attn_config['alibi']
|
47 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
48 |
-
self.learned_pos_emb = config.learned_pos_emb
|
49 |
-
if config.init_device == 'mixed':
|
50 |
-
if dist.get_local_rank() == 0:
|
51 |
-
config.init_device = 'cpu'
|
52 |
-
else:
|
53 |
-
config.init_device = 'meta'
|
54 |
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
55 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
56 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
57 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
58 |
self.embedding_fraction = config.embedding_fraction
|
59 |
-
self.wte =
|
60 |
-
if self.
|
61 |
-
self.wpe =
|
62 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
63 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
64 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
65 |
if config.init_device != 'meta':
|
66 |
-
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
67 |
self.apply(self.param_init_fn)
|
68 |
self.is_causal = not self.prefix_lm
|
69 |
self._attn_bias_initialized = False
|
@@ -72,22 +60,25 @@ class MPTModel(MPTPreTrainedModel):
|
|
72 |
if config.no_bias:
|
73 |
for module in self.modules():
|
74 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
75 |
-
|
|
|
76 |
module.register_parameter('bias', None)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
82 |
|
83 |
-
def get_input_embeddings(self)
|
84 |
return self.wte
|
85 |
|
86 |
-
def set_input_embeddings(self, value
|
87 |
self.wte = value
|
88 |
|
89 |
@torch.no_grad()
|
90 |
-
def _attn_bias(self, device
|
91 |
if not self._attn_bias_initialized:
|
92 |
if self.attn_bias_shape:
|
93 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
@@ -110,15 +101,14 @@ class MPTModel(MPTPreTrainedModel):
|
|
110 |
if attn_bias is None:
|
111 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
112 |
else:
|
113 |
-
|
114 |
-
attn_bias = attn_bias[:, :, :, _s_k:]
|
115 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
116 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
117 |
min_val = torch.finfo(attn_bias.dtype).min
|
118 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
119 |
return (attn_bias, None)
|
120 |
|
121 |
-
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor)
|
122 |
(s_k, s_q) = attn_bias.shape[-2:]
|
123 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
124 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
@@ -133,7 +123,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
133 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
134 |
return attn_bias
|
135 |
|
136 |
-
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor)
|
137 |
seq_len = sequence_id.shape[-1]
|
138 |
if seq_len > self.config.max_seq_len:
|
139 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
@@ -143,86 +133,122 @@ class MPTModel(MPTPreTrainedModel):
|
|
143 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
144 |
return attn_bias
|
145 |
|
146 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.
|
147 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
148 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
if attention_mask is not None:
|
150 |
attention_mask = attention_mask.bool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
if prefix_mask is not None:
|
152 |
prefix_mask = prefix_mask.bool()
|
153 |
if not return_dict:
|
154 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
155 |
if output_attentions:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
raise NotImplementedError('MPT does not support training with left padding.')
|
160 |
if self.prefix_lm and prefix_mask is None:
|
161 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
162 |
-
if inputs_embeds is not None:
|
163 |
-
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
164 |
if self.training:
|
165 |
if self.attn_uses_sequence_id and sequence_id is None:
|
166 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
167 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
168 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
169 |
-
S =
|
170 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
171 |
-
|
172 |
-
|
|
|
173 |
past_position = 0
|
174 |
if past_key_values is not None:
|
175 |
if len(past_key_values) != self.config.n_layers:
|
176 |
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
177 |
past_position = past_key_values[0][0].size(1)
|
178 |
-
if self.attn_impl == 'torch':
|
179 |
-
past_position = past_key_values[0][0].size(3)
|
180 |
if S + past_position > self.config.max_seq_len:
|
181 |
-
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length
|
182 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
183 |
-
if attention_mask is not None:
|
184 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
185 |
pos_emb = self.wpe(pos)
|
186 |
x = tok_emb + pos_emb
|
187 |
-
else:
|
188 |
-
x = tok_emb
|
189 |
if self.embedding_fraction == 1:
|
190 |
x = self.emb_drop(x)
|
191 |
else:
|
192 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
193 |
assert isinstance(self.emb_drop, nn.Module)
|
194 |
x = self.emb_drop(x_shrunk)
|
195 |
-
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=
|
196 |
-
presents = () if use_cache else None
|
197 |
if use_cache and past_key_values is None:
|
198 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
|
|
199 |
all_hidden_states = () if output_hidden_states else None
|
200 |
-
all_self_attns = () if output_attentions else None
|
201 |
for (b_idx, block) in enumerate(self.blocks):
|
202 |
if output_hidden_states:
|
203 |
assert all_hidden_states is not None
|
204 |
all_hidden_states = all_hidden_states + (x,)
|
205 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
206 |
-
|
207 |
-
if
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
x = self.norm_f(x)
|
213 |
-
|
214 |
-
assert all_hidden_states is not None
|
215 |
-
all_hidden_states = all_hidden_states + (x,)
|
216 |
-
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
217 |
|
218 |
-
def param_init_fn(self, module
|
219 |
init_fn_name = self.config.init_config['name']
|
220 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
221 |
|
222 |
-
def fsdp_wrap_fn(self, module
|
223 |
return isinstance(module, MPTBlock)
|
224 |
|
225 |
-
def activation_checkpointing_fn(self, module
|
226 |
return isinstance(module, MPTBlock)
|
227 |
|
228 |
class MPTForCausalLM(MPTPreTrainedModel):
|
@@ -231,13 +257,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
231 |
super().__init__(config)
|
232 |
if not config.tie_word_embeddings:
|
233 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
234 |
-
|
235 |
-
self.transformer: MPTModel = MPTModel(config)
|
236 |
-
for child in self.transformer.children():
|
237 |
-
if isinstance(child, torch.nn.ModuleList):
|
238 |
-
continue
|
239 |
-
if isinstance(child, torch.nn.Module):
|
240 |
-
child._fsdp_wrap = True
|
241 |
self.logit_scale = None
|
242 |
if config.logit_scale is not None:
|
243 |
logit_scale = config.logit_scale
|
@@ -248,53 +268,56 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
248 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
249 |
self.logit_scale = logit_scale
|
250 |
|
251 |
-
def get_input_embeddings(self)
|
252 |
return self.transformer.wte
|
253 |
|
254 |
-
def set_input_embeddings(self, value
|
255 |
self.transformer.wte = value
|
256 |
|
257 |
-
def get_output_embeddings(self)
|
258 |
return self.transformer.wte
|
259 |
|
260 |
-
def set_output_embeddings(self, new_embeddings
|
261 |
self.transformer.wte = new_embeddings
|
262 |
|
263 |
-
def set_decoder(self, decoder
|
264 |
self.transformer = decoder
|
265 |
|
266 |
-
def get_decoder(self)
|
267 |
return self.transformer
|
268 |
|
269 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None)
|
270 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
271 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
276 |
if self.logit_scale is not None:
|
277 |
if self.logit_scale == 0:
|
278 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
279 |
logits *= self.logit_scale
|
280 |
loss = None
|
281 |
if labels is not None:
|
282 |
-
|
283 |
-
|
284 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)),
|
285 |
-
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states
|
286 |
|
287 |
-
def param_init_fn(self, module
|
288 |
init_fn_name = self.config.init_config['name']
|
289 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
290 |
|
291 |
-
def fsdp_wrap_fn(self, module
|
292 |
return isinstance(module, MPTBlock)
|
293 |
|
294 |
-
def activation_checkpointing_fn(self, module
|
295 |
return isinstance(module, MPTBlock)
|
296 |
|
297 |
-
def prepare_inputs_for_generation(self, input_ids
|
298 |
if inputs_embeds is not None:
|
299 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
300 |
attention_mask = kwargs['attention_mask'].bool()
|
@@ -315,9 +338,8 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
315 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
316 |
|
317 |
@staticmethod
|
318 |
-
def _reorder_cache(past_key_values
|
319 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
320 |
-
|
321 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
322 |
for an example in transformers.
|
323 |
"""
|
|
|
1 |
"""A simple, flexible implementation of a GPT model.
|
|
|
2 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
3 |
"""
|
4 |
import math
|
5 |
import warnings
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
import torch.nn.functional as F
|
10 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
11 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
12 |
from .attention import attn_bias_shape, build_attn_bias
|
13 |
from .blocks import MPTBlock
|
|
|
|
|
|
|
|
|
|
|
14 |
from .norm import NORM_CLASS_REGISTRY
|
15 |
from .configuration_mpt import MPTConfig
|
16 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
17 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
18 |
from .meta_init_context import init_empty_weights
|
19 |
+
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
20 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class MPTPreTrainedModel(PreTrainedModel):
|
23 |
config_class = MPTConfig
|
24 |
base_model_prefix = 'model'
|
25 |
+
_no_split_modules = ["MPTBlock"]
|
26 |
+
supports_gradient_checkpointing = True
|
27 |
+
|
28 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
29 |
+
if isinstance(module, MPTModel):
|
30 |
+
module.gradient_checkpointing = value
|
31 |
|
32 |
class MPTModel(MPTPreTrainedModel):
|
33 |
|
34 |
def __init__(self, config: MPTConfig):
|
35 |
config._validate_config()
|
36 |
super().__init__(config)
|
37 |
+
self.gradient_checkpointing = False
|
38 |
self.attn_impl = config.attn_config['attn_impl']
|
39 |
self.prefix_lm = config.attn_config['prefix_lm']
|
40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
41 |
self.alibi = config.attn_config['alibi']
|
42 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
44 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
45 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
46 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
47 |
self.embedding_fraction = config.embedding_fraction
|
48 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
|
49 |
+
if not self.alibi:
|
50 |
+
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
51 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
52 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
53 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
54 |
if config.init_device != 'meta':
|
|
|
55 |
self.apply(self.param_init_fn)
|
56 |
self.is_causal = not self.prefix_lm
|
57 |
self._attn_bias_initialized = False
|
|
|
60 |
if config.no_bias:
|
61 |
for module in self.modules():
|
62 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
63 |
+
if config.verbose:
|
64 |
+
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
65 |
module.register_parameter('bias', None)
|
66 |
+
if config.verbose and config.verbose > 2:
|
67 |
+
print(self)
|
68 |
+
if 'verbose' not in self.config.init_config:
|
69 |
+
self.config.init_config['verbose'] = self.config.verbose
|
70 |
+
if self.config.init_config['verbose'] > 1:
|
71 |
+
init_fn_name = self.config.init_config['name']
|
72 |
+
warnings.warn(f'Using {init_fn_name} initialization.')
|
73 |
|
74 |
+
def get_input_embeddings(self):
|
75 |
return self.wte
|
76 |
|
77 |
+
def set_input_embeddings(self, value):
|
78 |
self.wte = value
|
79 |
|
80 |
@torch.no_grad()
|
81 |
+
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
82 |
if not self._attn_bias_initialized:
|
83 |
if self.attn_bias_shape:
|
84 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
|
|
101 |
if attn_bias is None:
|
102 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
103 |
else:
|
104 |
+
attn_bias = attn_bias[:, :, :, -s_k:]
|
|
|
105 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
106 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
107 |
min_val = torch.finfo(attn_bias.dtype).min
|
108 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
109 |
return (attn_bias, None)
|
110 |
|
111 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
112 |
(s_k, s_q) = attn_bias.shape[-2:]
|
113 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
114 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
|
|
123 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
124 |
return attn_bias
|
125 |
|
126 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
127 |
seq_len = sequence_id.shape[-1]
|
128 |
if seq_len > self.config.max_seq_len:
|
129 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
|
|
133 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
134 |
return attn_bias
|
135 |
|
136 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
137 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
138 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
139 |
+
if self.gradient_checkpointing and self.training:
|
140 |
+
if use_cache:
|
141 |
+
use_cache = False
|
142 |
+
if input_ids is not None and inputs_embeds is not None:
|
143 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
144 |
+
elif input_ids is not None:
|
145 |
+
batch_size, seq_length = input_ids.shape
|
146 |
+
elif inputs_embeds is not None:
|
147 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
148 |
+
else:
|
149 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
150 |
+
|
151 |
+
seq_length_with_past = seq_length
|
152 |
+
past_key_values_length = 0
|
153 |
+
|
154 |
+
if past_key_values is not None:
|
155 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
156 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
157 |
+
|
158 |
if attention_mask is not None:
|
159 |
attention_mask = attention_mask.bool()
|
160 |
+
else:
|
161 |
+
attention_mask = torch.ones(
|
162 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
163 |
+
)
|
164 |
+
|
165 |
+
if inputs_embeds is None:
|
166 |
+
tok_emb = self.wte(input_ids)
|
167 |
+
else:
|
168 |
+
tok_emb = inputs_embeds
|
169 |
+
|
170 |
if prefix_mask is not None:
|
171 |
prefix_mask = prefix_mask.bool()
|
172 |
if not return_dict:
|
173 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
174 |
if output_attentions:
|
175 |
+
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
176 |
+
#if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
177 |
+
# raise NotImplementedError('MPT does not support training with left padding.')
|
|
|
178 |
if self.prefix_lm and prefix_mask is None:
|
179 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
|
|
180 |
if self.training:
|
181 |
if self.attn_uses_sequence_id and sequence_id is None:
|
182 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
183 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
184 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
185 |
+
S = seq_length
|
186 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
187 |
+
if self.alibi:
|
188 |
+
x = tok_emb
|
189 |
+
else:
|
190 |
past_position = 0
|
191 |
if past_key_values is not None:
|
192 |
if len(past_key_values) != self.config.n_layers:
|
193 |
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
194 |
past_position = past_key_values[0][0].size(1)
|
|
|
|
|
195 |
if S + past_position > self.config.max_seq_len:
|
196 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
197 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
198 |
+
if attention_mask is not None and not self.training:
|
199 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
200 |
pos_emb = self.wpe(pos)
|
201 |
x = tok_emb + pos_emb
|
|
|
|
|
202 |
if self.embedding_fraction == 1:
|
203 |
x = self.emb_drop(x)
|
204 |
else:
|
205 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
206 |
assert isinstance(self.emb_drop, nn.Module)
|
207 |
x = self.emb_drop(x_shrunk)
|
208 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
|
|
209 |
if use_cache and past_key_values is None:
|
210 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
211 |
+
|
212 |
all_hidden_states = () if output_hidden_states else None
|
|
|
213 |
for (b_idx, block) in enumerate(self.blocks):
|
214 |
if output_hidden_states:
|
215 |
assert all_hidden_states is not None
|
216 |
all_hidden_states = all_hidden_states + (x,)
|
217 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
218 |
+
|
219 |
+
if self.gradient_checkpointing and self.training:
|
220 |
+
|
221 |
+
def create_custom_forward(module):
|
222 |
+
def custom_forward(*inputs):
|
223 |
+
# None for past_key_value
|
224 |
+
return module(*inputs)
|
225 |
+
|
226 |
+
return custom_forward
|
227 |
+
|
228 |
+
(x, past_key_value) = torch.utils.checkpoint.checkpoint(
|
229 |
+
create_custom_forward(block),
|
230 |
+
x,
|
231 |
+
past_key_value,
|
232 |
+
attn_bias,
|
233 |
+
attention_mask,
|
234 |
+
self.is_causal,
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
238 |
+
|
239 |
+
if past_key_values is not None:
|
240 |
+
past_key_values[b_idx] = past_key_value
|
241 |
x = self.norm_f(x)
|
242 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
|
|
|
|
|
|
|
243 |
|
244 |
+
def param_init_fn(self, module):
|
245 |
init_fn_name = self.config.init_config['name']
|
246 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
247 |
|
248 |
+
def fsdp_wrap_fn(self, module):
|
249 |
return isinstance(module, MPTBlock)
|
250 |
|
251 |
+
def activation_checkpointing_fn(self, module):
|
252 |
return isinstance(module, MPTBlock)
|
253 |
|
254 |
class MPTForCausalLM(MPTPreTrainedModel):
|
|
|
257 |
super().__init__(config)
|
258 |
if not config.tie_word_embeddings:
|
259 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
260 |
+
self.transformer = MPTModel(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
self.logit_scale = None
|
262 |
if config.logit_scale is not None:
|
263 |
logit_scale = config.logit_scale
|
|
|
268 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
269 |
self.logit_scale = logit_scale
|
270 |
|
271 |
+
def get_input_embeddings(self):
|
272 |
return self.transformer.wte
|
273 |
|
274 |
+
def set_input_embeddings(self, value):
|
275 |
self.transformer.wte = value
|
276 |
|
277 |
+
def get_output_embeddings(self):
|
278 |
return self.transformer.wte
|
279 |
|
280 |
+
def set_output_embeddings(self, new_embeddings):
|
281 |
self.transformer.wte = new_embeddings
|
282 |
|
283 |
+
def set_decoder(self, decoder):
|
284 |
self.transformer = decoder
|
285 |
|
286 |
+
def get_decoder(self):
|
287 |
return self.transformer
|
288 |
|
289 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
290 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
291 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
292 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
|
293 |
+
|
294 |
+
last_hidden_state = outputs.last_hidden_state
|
295 |
+
if self.model_parallel:
|
296 |
+
last_hidden_state = last_hidden_state.to(self.transformer.wte.weight.device)
|
297 |
+
logits = F.linear(last_hidden_state, self.transformer.wte.weight)
|
298 |
+
|
299 |
if self.logit_scale is not None:
|
300 |
if self.logit_scale == 0:
|
301 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
302 |
logits *= self.logit_scale
|
303 |
loss = None
|
304 |
if labels is not None:
|
305 |
+
labels = torch.roll(labels, shifts=-1)
|
306 |
+
labels[:, -1] = -100
|
307 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
308 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
309 |
|
310 |
+
def param_init_fn(self, module):
|
311 |
init_fn_name = self.config.init_config['name']
|
312 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
313 |
|
314 |
+
def fsdp_wrap_fn(self, module):
|
315 |
return isinstance(module, MPTBlock)
|
316 |
|
317 |
+
def activation_checkpointing_fn(self, module):
|
318 |
return isinstance(module, MPTBlock)
|
319 |
|
320 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
321 |
if inputs_embeds is not None:
|
322 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
323 |
attention_mask = kwargs['attention_mask'].bool()
|
|
|
338 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
339 |
|
340 |
@staticmethod
|
341 |
+
def _reorder_cache(past_key_values, beam_idx):
|
342 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
|
|
343 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
344 |
for an example in transformers.
|
345 |
"""
|